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Abstract—The remarkable success of face recognition (FR)
has endangered the privacy of internet users particularly in
social media. Recently, researchers turned to use adversarial
examples as a countermeasure to privacy attacks. In this paper,
we assess the effectiveness of using two widely known adversarial
methods (BIM and ILLC) for de-identifying personal images.
We discovered, unlike previous claims in the literature, that it
is not easy to get a high protection success rate (suppressing
identification rate) with imperceptible adversarial perturbation
to the human visual system. Finally, we found out that the
transferability of adversarial examples is highly affected by
the training parameters of the network with which they are
generated.

Index Terms—Artificial Intelligence, Face Biometrics, De-
identification, Adversarial Attacks

I. INTRODUCTION

Deep learning has evolved as a strong and efficient tool to be

applied to a broad spectrum of complex learning problems that

were difficult to solve using traditional machine learning. The

development of deep convolutional neural networks (CNNs)

has been so revolutionary that today it can exceed human-

level performance. As a consequence, deep networks are being

extensively used in many recent applications including face

recognition. Now, face recognition (FR) systems have become

an exceptionally accurate technology in identifying people

from images [1], [2]. While being useful, face recognition may

invade the privacy of individuals [3] when used to exploit and

process illicitly their face images [4], [5] and videos [6], [7]

found on the internet, particularly social media.

In recent years, several reports revealed unauthorized collec-

tions of large datasets of identified face data from social media.

Reports on Cambridge Analytica [8] in 2018, and Clearview

AI in 2020 [9] are glaring examples of privacy leakage related

to face biometrics. So far, the most common defense against

this threat has been to set all social media profiles to ‘private’,

allowing only chosen friends access to your images [10].

To mitigate these privacy threats, some studies [11], [12]

turned to generate adversarial perturbations called cloaks to

de-identify face biometrics in personal images before up-

loading them to social media. These perturbations are being

generated by applying a very slight (imperceptible to human

eyes) modification to the input and optimizing it to maximize

the probability of misclassifcation by a machine learning clas-

sifier [13]. Using attacks to preserve privacy in biometrics has

attracted attention [14], [15] which also includes adversarial

examples.

In another line of work, instead of introducing imperceptible

artifacts at the raw image level to harden automatic identifica-

tion, one can operate at the feature level by disentangling there

the identification information and reducing it while preserving

other information of interest (e.g., facial emotions [16], soft

biometrics [17], etc.) See the work by Morales et al. [18] and

the references therein for further information in this line.

In the present paper, we conduct an experimental evaluation

of the effectiveness of two popular adversarial methods, i.e.

Basic Iterative Method (BIM) and Iterative Least Likely Class

(ILLC) [19], for de-identifying face biometrics in personal

photos at the raw image level. In particular, we focussed on

the transferability of the de-identified face biometrics across

different classifiers. To this end, we used three popular pre-

trained face recognition models (FaceNet, ResNet-50, and

SENet-50) interchangeably to create an adversarial example

by one model and defend against it using all three models.

By analyzing the quantitative results of BIM and ILLC

methods, we obtained some important findings. First, it is

not likely to obtain a high protection success rate together

with quite imperceptible adversarial perturbation. In particular,

when it comes to black-box scenarios and any preprocessing

(e.g. image compression, resizing) that affects the adversarial

trigger, this goal would be ambitious. Second, we discuss that

the definition of feature embeddings of the adversarial class are

highly dependent on the other training classes in the attacker

network. Therefore, the transferability of generated adversarial

examples (i.e. de-identified personal images) conforms with

the similarity of the attacker network to that of the defender

in terms of training parameters. Third, unlike our expectation,

although the BIM method is an untargeted method (i.e. adver-

sarial method without an specific target), it is more protective

than the targeted ILLC method.

II. PROTECTION MODEL

In this section, we introduce the protector’s goal, capabili-

ties, and knowledge under which the de-identified samples are

generated. Since the goal of our study is to preserve the privacy

using adversarial examples, we call the party who generates

the examples the protector and the party whose network is

used for classifying the examples, the invader. For a better

723

2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)

979-8-3503-2697-0/23/$31.00 ©2023 IEEE
DOI 10.1109/COMPSAC57700.2023.00099

20
23

 IE
EE

 4
7t

h 
A

nn
ua

l C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e 

(C
O

M
PS

A
C

) |
 9

79
-8

-3
50

3-
26

97
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
O

M
PS

A
C

57
70

0.
20

23
.0

00
99

Authorized licensed use limited to: Universidad Autonoma de Madrid. Downloaded on February 02,2024 at 14:00:07 UTC from IEEE Xplore.  Restrictions apply. 



Objective

Optimizing (de-identifying)

F
e

a
tu

re
 E

x
tra

cto
r

Classification

Perturbation

De-identified image

Target image (LLC)

True class

LLC

Original image

min( + 4, 1. ) iterations

Fig. 1: Overview of the targeted adversarial examples to de-identify face images.

understanding of the paper, we provide definitions from their

original sources with which we conducted our experiments.

Therefore, in the remaining of the paper, we use the following

notations:

• x: the input face biometric of the identity who wants to

be de-identified. It is an RGB image in the shape of a 3D

tensor (width× height× depth) whose values range is

in [0, 255].

• xadv: the adversarial example (i.e. de-identified image)

for x.

• ytrue: the true class label for the image x.

• ytarget: the target class label that the attacker is trying

to optimize the input image to fool the defender classifier

with, in our case the least likely class (yLLC).

• ε the noise budget to add to one pixel of X .

• C(x): it denotes the classifier C(x) : X → Y where

x ∈ X ⊂ R
d, and y = {1, 2, · · · , N} with N being the

total number of classes.

• J(x, ytarget): the cross-entropy cost function for com-

puting the loss of x given the target class label ytarget.
• Clipε{xadv}: clipping function to confine the alteration

of each pixel in the de-identified image xadv to the noise

budget ε to keep the result in the LP ε-neighbourhood of

the input image x.

In general, adversarial methods are divided into two cat-

egories: Untargeted, where C(xadv) �= ytrue and Targeted,

where C(xadv) = ytarget (see Fig. 1).

A. Protector’s goal

The goal of the protector is to craft a constrained adversarial

perturbation to de-identify face biometrics in their personal

image. To this end, the protector adds a small perturbation

measured by LP norm to the original face biometric in

a specific number of iterations. For the adversarial method

we used, the upper bound of this number of iterations is

determined by min(ε+ 4, 1.25ε).

B. Protector’s capability

To achieve the goal, the generated adversarial examples

must satisfy ‖xadv − x‖p ≤ ε to mislead the model of the

privacy invader. Therefore, the protector is able to conduct

the following optimization problems in the aforementioned

number of iterations according to the method he adopts. Re-

garding the untargeted methods, the protector generates the de-

identified face by maximizing the cost function J(xadv, ytrue):

xadv = argmax
xadv :‖xadv−x‖p≤ε

J(xadv, ytrue) (1)

while for the targeted method, de-identified face images are

crafted by minimizing the cost function J(xadv, ytarget):

xadv = argmin
xadv :‖xadv−x‖p≤ε

J(xadv, ytarget) (2)

C. Protector’s knowledge
Similar to the real-world scenarios, we conducted our as-

sessment in a black-box setting. In black-box attacks, it is

assumed that the protector has no prior knowledge of the

invader’s network or its parameters. With this assumption,

the protector can only acquire the classification output of the

invader model. Therefore, in an oracle attack, the protector

evaluates the protection success rate by providing crafted in-

puts with various perturbation budgets. However, the protector

can use the same dataset for generating adversarial examples

with which the invader’s model has been trained.

III. GENERATING DE-IDENTIFIED FACES

The aim of de-identification on face biometrics is to pre-

serve the privacy of the subjects by protecting their true

identity against unwanted face identifications. To this end,

the use of adversarial perturbations through a technique called

Image Cloaking has been proposed recently. Shan et al. [11]

proposed a method called Fawkes, improving image cloaking

by reducing the effectiveness of face recognition software

while preserving the quality of the image to human eyes.

This method is a targeted approach choosing k random target

classes, picking the centroid Gk of them, and selecting the

most dissimilar class T to that of the user’s face x by

computing:

T = argmax min
k=1..K x∈X

Dist(C(x), Gk) (3)
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Fig. 2: Example of de-identified face images for all the models with various perturbation budgets (ε)

Another similar work called LowKey [12] did the image

cloaking by updating xadv iteratively adding the gradient

toward the maximization objective. They applied Gaussian

smoothing to maintain the quality of the image reducing

the accuracy of Amazon Rekognition to 32.5% (i.e. 67.5%
protection rate). In the current paper, we generate de-identified

face images with various perturbation budgets using BIM and

ILLC adversarial methods as it is shown in Fig. 2.

A. Basic Iterative Method (BIM)

According to [20], the simplest method to generate an

adversarial image is to find the perturbation that maximizes

the cost function with respect to a L∞ constraint with just one

back-propagation (FGSM method). Later, [19] extended that

method by doing back-propagation iteratively while clipping

values changes in pixels after each iteration to keep the

alteration to the ε-neighbourhood of the original image. This

kind of iterative hill-climbing attacks have for long being

studied in the biometrics security literature [21], [22]. This

method is called BIM and the adversarial image in each

iteration is crafted as below:

x
(i+1)
adv = Clipε{x(i)

adv + α · sign(∇
x
(i)
adv

J(x
(i)
adv, ytrue)} (4)

where α is the step size and x
(0)
adv = x at the initialization

of BIM method. Therefore, by maximizing the cost, the

classification result of the de-identified face image xadv would

lie far from the original image x.

B. Iterative Least Likely Class (ILLC)

Unlike BIM, the only difference of this method is to

reduce the cost but toward a specific target. In this case,

the target is the least likely class when the original image is

classified. As a result, the crafted de-identified face will avoid

the original image mistakenly identified as another person in

the classification database. However, the effectiveness of this

method for de-identification relies on the dissimilarity rate of

all the subjects in the training dataset. This method is also an

iterative method initiated with x
(0)
adv = x and the adversarial

image in each iteration is crafted as below:

x
(i+1)
adv = Clipε{x(i)

adv − α · sign(∇
x
(i)
adv

J(x
(i)
adv, yLLC)} (5)

IV. EVALUATION

A. Evaluation metric

So far, the most common metric that has been used to

evaluate the performance of adversarial examples is trans-

ferability. This metric denotes that the examples produced

to deceive a particular model can be used to deceive other

models regardless of the underlying architecture. To estimate

the transferability of the generated adversarial examples we

use the protection success rate also called the suppressing

identification rate. In our case, it would be the misclassifi-

cation rate of the de-identified faces by the target classifier.

Thus, given the adversarial method Advε to generate the de-

identified face image as xadv = Advε(x) for the input face

x under the constraints of perturbation budget ε and lp-norm,
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and target classifier C(x), the Protection Success Rate (PSR)

is defined as:

PSR(Advε, C) = 100− (
100

N
ΣN

i=11(C(Advε(xi)) = ytrue))

(6)

where N is the number of test samples and 1(.) is the indicator

function. The higher the PSR, the more resilient the example

is to be identified in the target classifier.

B. Evaluation settings

Our experiments are divided into two phases: Generating
the de-identified image of the input face in the source network

by the protector, and Classifying the example in target net-

works to evaluate the Protection Success Rate (PSR). To this

end, we used three widely used pre-trained face recognition

models (all trained on the VGGFace2 dataset [23]): FaceNet

[1], ResNet-50 [2], SENet-50 [24].

We start the process of generating de-identified faces in the

source network as follows:

• First, we select N random subjects from the VGGFace2

dataset to protect their identity.

• Second, the perturbation budget ε is picked from the

setε = {4, 8, 16, 32, 64, 128} [19]. In terms of transfer-

ability, we will assess the proportion of Protection Suc-

cess Rate with respect to the image quality degradation.

The ideal output is to achieve the largest PSR using the

smallest possible perturbation budget.

• Third, the number of iterations for optimizing the input

face toward the adversarial goal is calculated as niter =
min(ε+ 4, 1.25× ε).

• Finally, for every Model ∈ {FaceNet, ResNet-50, SENet-
50} as source network, for each random input face x ∈
{xi}Ni=1, and for every ε ∈ setε, we iterate the input

image x by niter doing backpropagation toward ytarget
for ILLC method and ytrue for BIM method.

Some examples of de-identified face images regarding both

adversarial methods for each ε ∈ setε are depicted in Fig. 2.

Once the de-identified face is crafted, for each Model ∈
{FaceNet, ResNet-50, SENet-50} as target networks, we assess

the PSR of the crafted examples via the following steps:

• First, the face is extracted using MTCNN [25] to check

if the perturbation makes the face undetectable.

• Second, the detected face is fed to the classifier of the

selected Model.
• Third, based on the classification maximum probability,

we compute Top1, Top5, Top10, Top25, Top50 where

C(Advε(xi)) = ytrue.

• Finally, for each top, we calculate PSR according to Eq. 6.

The resulting PSR for the niter corresponding to each

ε ∈ setε for FaceNet, ResNet-50, and SENet-50 is depicted

in Figs. 3, 4, 5 respectively.

C. Evaluation results

To obtain our results, we crafted examples on one model

per experiment then we evaluated them against all networks

indepndently. To assess the effect of compression to the

adversarial trigger, all the input faces are fed into networks

uncompressed, and crafted adversarial examples are stored

with JPEG compression. Another important aspect that we

included in our investigation is the effect of resizing crafted

examples. FaceNet is different from the other two networks

in terms of input image size. While FaceNet accepts images

with size 160 × 160, ResNet and SENet accept 224 × 224.

This means that de-identified faces experience image resizing

when they are crafted in FaceNet as source network and

classified in ResNet and SENet as target network and vice

versa. Looking at Figs. 3, 4, 5, the first apparent understanding

that spring to mind is that all adversarial examples crafted

using a specific source model (FaceNet, ResNet, or SENet)

transfer particularly well when considering identification based

on the same recognition model. In addition, it is clear that

the examples generated by FaceNet are more transferable

compared to those crafted by ResNet and SENet. Comparing

Fig. 3 with Figs. 4, 5, it can be seen that examples crafted

by FaceNet using BIM method at ε = 32 reported high

transferability as they are highly protective when they were

classified by the other two networks.

It is also obvious that, in all figures, when the perturbation

budget increases (i.e. as the quality of the image is decreas-

ing due to adding more noise), the protection success rate

increases as well, but at the cost of sacrificing image quality.

Considering these charts, we see that BIM (an untargeted

approach) outperforms ILLC (a targeted method). Taking into

account Fig. 3, Top-25 charts, it can be noticed that while in

BIM chart at ε = 32, PSR ≥ 95% for ResNet and SENet

while the corresponding ones for ILLC are PSR ≤ 65%.

These results show that using BIM and ILLC adversarial

methods to preserve privacy for face images can only be

achievable with ε > 32 at the cost of degrading the quality of

the image. It also indicates that the protection success rate

of the crafted examples is highly affected by resizing the

examples and the difference of training parameters between

source and target networks. Finally, these results point out

that untargeted methods need further attention as in our

experiments BIM performed better than the ILLC.

V. CONCLUSION

Using adversarial methods to de-identify face biometrics,

it is likely that untargeted method are more protective than

targeted ones. Yet, further studies are needed to prove this

hypothesis. Besides, using these two methods, it’s not possible

to get a high de-identification with completely imperceptible

perturbation. That’s why most of the current literature suggests

keeping the balance between the suppressing identification

rate and the image quality. To this end, in our future study,

we will focus on the effectiveness and transferability of less

destructive adversarial methods to preserve the quality of the

image including one-pixel attack, jacobian-based saliency map

attack (JSMA), and deepfool.

Future work will also explore image quality aspects [26]

of perturbed images related to their biometric content [27],
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Fig. 3: Protection Success Rate (PSR) as perturbation budget increases for adversarial examples crafted using FaceNet. First

row: ILLC method (left to right: Top1, Top5, Top25). Second row: BIM method.

Fig. 4: Protection Success Rate (PSR) as perturbation budget increases for adversarial examples crafted using ResNet. First

row: ILLC method (left to right: Top1, Top5, Top25). Second row: BIM method.

[28] and human perception, and based on that we will try

to optimize in a multimodal machine learning setup [29] the

protection success rate as target function conditioned to human

perception and biometric content restrictions.
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G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 387–402, Springer, 2013. 1

[14] M. Gomez-Barrero, J. Galbally, and J. Fierrez, “Efficient software attack
to multimodal biometric systems and its application to face and iris
fusion,” Pattern Recognition Letters, vol. 36, pp. 243–253, Jan. 2014. 1

[15] M. Ghafourian, J. Fierrez, et al., “OTB-morph: one-time biometrics via
morphing applied to face templates,” in IEEE/CVF Winter Conf. on
Applications of Computer Vision, pp. 321–329, 2022. 1

[16] A. Peña, J. Fierrez, A. Lapedriza, and A. Morales, “Learning emotional-
blinded face representations,” in ICPR, January 2021. 1

[17] E. Gonzalez-Sosa, J. Fierrez, R. Vera-Rodriguez, and F. Alonso-
Fernandez, “Facial soft biometrics for recognition in the wild: Recent
works, annotation and cots evaluation,” IEEE Trans. on Information
Forensics and Security, vol. 13, pp. 2001–2014, August 2018. 1

[18] A. Morales, J. Fierrez, R. Vera-Rodriguez, and R. Tolosana, “Sen-
sitiveNets: learning agnostic representations with application to face
recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 43, pp. 2158–2164, June 2021. 1

[19] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in Artificial Intelligence Safety and Security, pp. 99–
112, Chapman and Hall/CRC, 2018. 1, 3, 4

[20] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014. 3

[21] J. Galbally, C. McCool, J. Fierrez, S. Marcel, and J. Ortega-Garcia, “On
the vulnerability of face verification systems to hill-climbing attacks,”
Pattern Recognition, vol. 43, pp. 1027–1038, March 2010. 3

[22] M. Gomez-Barrero, J. Galbally, J. Fierrez, and J. Ortega-Garcia, “Face
verification put to test: a hill-climbing attack based on the uphill-simplex
algorithm,” in Proc. Intl. Conf. on Biometrics, March 2012. 3

[23] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2:
A dataset for recognising faces across pose and age,” in IEEE Intl. Conf.
on Automatic Face & Gesture Recognition (FG), pp. 67–74, 2018. 4

[24] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in IEEE
Conf. on Computer Vision and Pattern Recognition, 2018. 4

[25] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multitask cascaded convolutional networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016. 4

[26] T. Schlett, C. Rathgeb, O. Henniger, J. Galbally, J. Fierrez, and C. Busch,
“Face image quality assessment: A literature survey,” ACM Computing
Surveys, vol. 54, no. 10, pp. 1–49, 2022. 4

[27] F. Alonso-Fernandez, J. Fierrez, and J. Ortega-Garcia, “Quality measures
in biometric systems,” IEEE Security & Privacy, vol. 10, pp. 52–62,
December 2012. 4

[28] J. Hernandez-Ortega, J. Galbally, J. Fierrez, and L. Beslay, “Biometric
quality: Review and application to face recognition with FaceQnet,”
arXiv 2006.03298, 2021. 4

[29] A. Peña, I. Serna, A. Morales, J. Fierrez, et al., “Human-centric
multimodal machine learning: Recent advances and testbed on AI-based
recruitment,” SN Computer Science, 2023. 5

728

Authorized licensed use limited to: Universidad Autonoma de Madrid. Downloaded on February 02,2024 at 14:00:07 UTC from IEEE Xplore.  Restrictions apply. 


