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Abstract—Presentation Attack Detection (PAD) is a crucial
stage in facial recognition systems to avoid leakage of personal
information or spoofing of identity to entities. Recently, pulse
detection based on remote photoplethysmography (rPPG) has
been shown to be effective in face presentation attack detection.
This work presents three different approaches to the presentation
attack detection based on rPPG: (i) The physiological domain,
a domain using rPPG-based models, (ii) the Deepfakes domain,
a domain where models were retrained from the physiological
domain to specific Deepfakes detection tasks; and (iii) a new
Presentation Attack domain was trained by applying transfer
learning from the two previous domains to improve the capability
to differentiate between bona-fides and attacks. The results show
the efficiency of the rPPG-based models for presentation attack
detection, evidencing a 21.70% decrease in average classification
error rate (ACER) (from 41.03% to 19.32%) when the pre-
sentation attack domain is compared to the physiological and
Deepfakes domains. Our experiments highlight the efficiency of
transfer learning in rPPG-based models and perform well in
presentation attack detection in instruments that do not allow
copying of this physiological feature.

Index Terms—Remote photoplethysmography, Presentation at-
tacks detection, Convolutional Attention Network

I. INTRODUCTION

Face recognition systems are widely used worldwide in

smartphones, e-commerce, or e-bank identification access con-

trol systems. This series of face recognition applications has

attracted the attention of attackers aiming to exploit system

vulnerabilities [1]–[6]. Vulnerabilities in face recognition sys-

tems start with the ability and facility to find and study the

users to attack efficiently. Mainly the use of social networks

has made it easier to find and select photographs of users with

a good definition, which allows the creation of presentation

attack instruments such as paper, masks, and replay devices

to try to breach such systems [7].

In order to prevent attackers from having a chance of suc-

cess, the scientific community has in recent years implemented

techniques of presentation attack detection (PAD) to avoid

these vulnerabilities in the systems using machine learning [8],

[9] and deep learning [10]–[12]. Presentation attack detection

can be divided into three classes: appearance-based approach,

motion-based approach, and remote photoplethysmography-

based approach (rPPG-based approach).

Our work is focused on improving biometric presentation

attack detection with rPPG-based models and deep learning.

The main contributions of this work are:

• An improved rPPG-based system for face presentation

attack detection through domain adaptation across three

different approaches: Physiological domain, Deepfakes

domain, and a new domain that focuses on presentation

attacks created by transfer learning from the first two

domains.

• An experimental study analyzing a novel dataset of videos

collected by Veridas, which contains a wide variety of

biometric attack instruments and user identities under

controlled conditions.

The rest of the paper is organized as follows: Related Works

provides an overview of the literature on presentation attack

detection. Materials and Methods present the experimental

framework, including the description of the datasets and the

methods. Experiments and Results summarize the experiments

and results. Finally, the discussion, conclusions, and future

work are drawn in the Discussion and Conclusion.

A. Related Works

Face Presentation Attack Detection (PAD) methods that can

be divided into three categories:

1) Appearance-based methods: Appearance-based methods

are focused on differentiating bona-fide and attacks from

spatial information in the images. The classification can be

possible by analyzing color texture [13], image quality [14],

[15], and reflection patterns [16]; On the other hand, recent

studies employ Convolutional neural networks (CNN) in single

image analysis [10], [17] or with a combination of additional

images provided by invisible lights, infrared cameras, or

thermic cameras [18]. Using additional images generates some

difficulties because additional hardware is required to improve

the results.

2) Motion-based methods: Motion-based methods aim to

exploit the inconsistencies over time windows on video

frames; they try to analyze features such as optical flow [19],

eye-blink [8], or facial movements [8], [20], [21]. These

methods may not work in specific attacks that expose the
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Fig. 1. Experimental Framework. It comprises three stages: First, a preprocessing step to normalize the video frames. Then, a Convolutional Attention Network
composed of Motion and Appearance Models. Finally, a new classification layer for Presentation Attack Detection.

attacker’s eyes and mouth [22] or when the attacker uses video

replay strategies.

3) rPPG-based methods: rPPG-based methods are a non-

contact technique for recovering physiological signals through

a conventional RGB camera under an environmental light

through the analysis of changes in the skin color pigmentation

caused by heartbeats [23]–[26].

Traditional rPPG-based methods employ the extraction of

temporal signals per channel using all the image, the face,

or specific regions of interest over the face like the cheeks

or the forehead. After that, the spectrum, the energy, or the

total power is used as features in PAD [9], [27]–[30]. On the

other hand, Deep rPPG-based methods employ a combination

of appearance and motion methods, where the appearance

features can be extracted with pretrained CNN and later use a

Recurrent Neural Network (RNN) to find a motion/temporal

correlation between the features. Another approach is using

Visual Transformers (ViT) to make the appearance and motion

correlation in one module [11], [12], [31].

rPPG-based methods are a solution that works on conven-

tional presentation attacks such as paper attacks and 3D mask

attacks because these materials do not show heartbeat signals.

Otherwise, when the attacks are carried out with video replays,

these attacks can capture the heartbeat patterns of the user if

the video is recorded with enough quality.

II. MATERIALS AND METHODS

We propose an experimental framework where physiological

information is explored at different levels (see Figure 1). The

hypotheses and experiment proposed are presented below.

Physiological Domain (Level 1). We propose to use a rPPG

prediction models to obtain physiological information.

• Hypothesis (H1): videos captured provide physiological

information that allows us presentation attack detection.

• Experiment: we evaluate presentation attack detection

performance for different bona-fide and biometric pre-

sentation attack videos using the DeepPhys model [32].

DeepFakes Domain (Level 2). We propose to evaluate dif-

ferent DeepFakes detection models [33] adapted from physi-

ological domains.

• Hypothesis (H2): models based on DeepFakes detection

provide additional information to improve the PAD based

on rPPG models.

• Experiment: the rPPG models (H1) are used as pre-

trained models and then finetuned with two DeepFakes

databases (Celeb-DF v2 and DFDC preview databases).

The resulting models are used to evaluate bona-fide and

biometric presentation attack videos.

Presentation Attacks Domain (Level 3). We propose to im-

prove presentation attack detection by incorporating a private

database with multiple presentation attack instruments.

• Hypothesis (H3): Presentation attack detection is im-

proved when presentation attack instruments are incor-

porated into the training process.

• Experiment: rPPG (H1) and DeepFakes (H2) models are

adapted to presentation attacks domain using a private

database with different presentation attack instruments.

Details of the methods implemented to validate all hypotheses

are presented in Methods.

A. Databases
1) Celeb-DF v2 Database: Celeb-DF v2 Database was

created to get a better visual quality compared with other

databases of DeepFakes [34], [35]. Fifty-nine subjects are

chosen with various distribution in their genders, ages, and

ethnic groups. The database includes 590 real videos and

5639 fake videos, where the real videos were recollected from

YouTube, and the fake videos were created using swapping

faces between pairs of subjects.
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TABLE I
NUMBER OF VIDEOS FOR EACH ATTACK AND NUMBER OF BONA-FIDES

VIDEOS IN VERIDAS DB.

Veridas DB Abbreviation Videos

Bona-fide BF 2061
Mannequin Head Attack MH 1332
Layered 2D Transparent Photo L2TP 1308
Plastic Mask Attack PlM 1303
Latex Mask Attack LM 1190
3D Curved Paper Mask 3CPM 1162
Print Mask Attack PrM 711
Video Replay Attack VR 489
Print Attack Pr 244
Silicone Mask Attack SM 240
Photo Replay Attack PR 189
Print 3D Layered Mask Pr3LM 144
Total attacks – 8336

TABLE II
COMPARISON TABLE BETWEEN THE DIFFERENT DATABASES USED IN THIS

WORK.

#Videos Bona-fides Attacks Users

Celeb-DF [34] 5214 1131 4083 66
DFDC [36] 6229 590 5639 59
Veridas DB 10397 2061 8336 53

2) DFDC Preview: Facebook released the DFDC

database [35], [36] in collaboration with other companies

and academic institutions. In this work, we consider the

DFDC Preview dataset, composed of 5.214 videos (1.131
real videos and 4.083 fake videos) from 66 subjects. The

videos have diversity in gender, skin tone, age, illuminations,

and backgrounds. Fake videos were generated by swapping

faces with similar attributes such as skin-tone, facial hair, and

glasses.

3) Veridas DB: Veridas created the Veridas database. The

database contains 10.397 video recordings of 53 users, and

it is divided into 11 attack types. Table I summarizes the

number of videos per attack in Veridas DB. Veridas DB was

split using a double-stratified split between the presentation

attack instruments and user identities. The 10.397 videos from

Veridas DB were divided into 2.649, 662, and 7.086 for

training, validation, and testing, respectively. All the videos

in Veridas DB were recorded while the users performed

head movements, including looking to the left, right, up, and

down in front of the camera. These movements enable the

application of motion-based PAD methods.

Table II finally shows a summary of the key numbers in the

3 above-described datasets used in the present paper: number

of videos, division between bona-fides and attacks, and number

of users.

B. Methods

1) Face extraction: The videos were preprocessed using a

face detection engine based on MobileNet v2, fine-tuned for

face detection. The square bounding box obtained is expanded

by 80% about the bounding box width. Additionally, one

exponential moving average (EMA) was used to smooth the

changes in the bounding box over the video. Finally, each

cropped face I(t) was resized to 36×36×3 pixels.

2) DeepPhys: In this work, we employ the DeepPhys

model, a Convolutional Attention Network created by Chen

and McDuff in [24] and implemented by Hernandez-Ortega et

al. in [25] where DeepPhys was trained to predict the hearth

rate on COHFACE database [37]. DeepPhys’s objective is to

estimate the human heart rate using photoplethysmography

and facial video sequences. The model comprises two parallel

Convolutional Neuronal Networks (CNN) that extract spatial

and temporal information from videos, combining motion and

appearance across the model. Figure 1 shows the two CNN

branches from the DeepPhys model, and they are described

below:

• Motion model: It is designed to realize a short-time

analysis of the videos to detect pixel changes over the

scene. Input model at time t is calculated to follow the

next equation:

˜I(t) =
I(t)− I(t− 1)

I(t) + I(t− 1)
(1)

• Appearance model: It is designed to create attention

masks based on the subject’s appearance to help the

motion model. Input model at time t is the raw frame

I(t)

3) DeepFakesON-Phys: DeepFakesON-Phys model was

based on DeepPhys and adapted to DeepFakes detection [32].

DeepFakesON-Phys was initialized with the weights of Deep-

Phys as a starting point and retrained completely with Deep-

Fakes databases. DeepFakesON-Phys has two versions, the

first model was trained with the DFDC preview database, and

the second model was trained with Celeb-DF v2 Database.

4) PAD-Phys: PAD-Phys is the first approach to PAD

using DeepPhys models. PAD-Phys training was adapted from

DeepPhys and DeepFakesON-Phys models, leaving all CNN

layers frozen before the flatten layer and retraining two new

last layers to classify between bona-fide and attacks.

PAD-Phys models were trained with the Veridas DB, which

includes 11 presentation attack instruments, resulting in three

models: (i) PAD-Phys Vr. 1, based on DeepPhys; (ii) PAD-

Phys Vr. 2, based on DeepFakesON Phys trained with Celeb-

DF; and (iii) PAD-Phys Vr. 3, based on DeepFakesON Phys

trained with DFDC.
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TABLE III
PERFORMANCE METRICS FOR DEEPPHYS AND PAD-PHYS MODELS

RETRAINED ON EACH VERIDAS DB ATTACK FOR AN BPCER OF 41.44%
AND AN BPCER OF 18.28%, RESPECTIVELY IN EACH MODEL.

DeepPhys PAD-Phys Vr.1
APCER ACER APCER ACER

MH 42.01 41.73 1.06 9.67
L2TP 34.36 37.90 2.57 10.42
PlM 47.36 44.40 3.50 10.89
LM 50.97 46.20 9.69 13.99
3CPM 48.50 44.97 2.28 10.28
PrM 62.32 51.88 32.00 25.14
VR 49.84 45.64 69.50 43.89
Pr 34.91 38.18 7.19 12.73
SM 46.73 44.09 4.17 11.22
PR 32.35 36.90 41.18 29.73
Pr3LM 41.67 41.55 6.19 12.23
Total 45.33 43.38 10.94 14.61

5) Performance metrics: The final decision score for the

video is the mean value over the predicted temporal score

obtained after each model [30], [38], [39]. Classification

results are determined by the threshold obtained from ana-

lyzing the equal error rate in the validation data partition.

The performance is reported using metrics such as the attack

presentation classification error rate (APCER), the bona-fide

presentation classification error rate (BPCER), the average

classification error rate (ACER), and the receiver operating

characteristic curve (ROC curve).

BPCER is the proportion of bona-fide samples that are

misclassified as attacks, equivalent to the False Negative Rate

(FNR). APCER, on the other hand, is the proportion of attack

samples incorrectly classified as genuine, equivalent to the

False Positive Rate (FPR).

III. EXPERIMENTS AND RESULTS

A. DeepPhys

Following the methodology presented in Section II-B4, the

DeepPhys model was retrained with 2.649, 662, and 7.086
videos for training, validation, and testing, respectively, from

Veridas DB. Table III shows the PAD performance for the

DeepPhys model and PAD-Phys Vr.1 (based on DeepPhys)

models for the test partition on Veridas DB using a fixed

threshold obtained from the validation partition. Results show

a BPCER of 41.44% and a BPCER of 18.28% for DeepPhys

and PAD-Phys Vr. 1, respectively.

Results show that DeepPhys initially has a performance over

the chance for all the attacks, with ACER around 43.38%.

These results support the first hypothesis (H1), which presents

the idea that the videos captured provide physiological in-

formation to differentiate between bona-fides and attacks.

Additionally, Table III shows a reduction in the ACER for

almost all the attacks, obtaining an average ACER decrease

of 28.77 percentage points (from 43.38% to 14.61%). These

results suggest that the third hypothesis (H3) is partially

accepted.

TABLE IV
PERFORMANCE METRICS FOR THE DEEPFAKES PRETRAINED ON

CELEB-DF AND PAD-PHYS MODELS RETRAINED ON EACH VERIDAS DB
ATTACK FOR AN BPCER OF 39.60% AND AN BPCER OF 24.97%,

RESPECTIVELY.

DeepFakesON Phys Vr. Celeb-DF PAD-Phys Vr.2
APCER ACER APCER ACER

MH 41.67 40.63 14.24 19.60
L2TP 29.24 34.42 10.85 17.91
PlM 29.34 34.47 7.32 16.14
LM 34.58 37.09 39.71 32.34
3CPM 41.76 40.68 9.70 17.33
PrM 56.63 48.11 36.63 30.80
VR 48.89 44.24 55.66 40.31
Pr 50.30 44.95 11.98 18.47
SM 49.93 44.76 7.50 16.23
PR 57.35 48.47 13.97 19.47
Pr3LM 50.00 44.80 29.90 27.43
Total 38.79 39.19 22.01 23.49

TABLE V
PERFORMANCE METRICS FOR THE DEEPFAKES PRETRAINED ON DFDC

AND PAD-PHYS MODELS RETRAINED ON EACH VERIDAS DB ATTACK FOR

AN BPCER OF 42.45% AND AN BPCER OF 29.03%, RESPECTIVELY.

DeepFakesON Phys Vr. DFDC PAD-Phys Vr.3
APCER ACER APCER ACER

MH 45.49 43.97 2.35 15.69
L2TP 13.54 27.99 0.34 14.69
PlM 48.54 45.50 4.81 16.92
LM 51.10 46.77 15.94 22.49
3CPM 31.29 36.87 1.56 15.30
PrM 37.05 39.75 16.00 22.52
VR 38.41 40.43 47.48 38.26
Pr 29.59 36.02 1.80 15.42
SM 50.51 46.48 3.33 16.18
PR 12.50 27.47 8.09 18.56
Pr3LM 46.88 44.66 0.00 14.52
Total 38.60 40.52 10.71 19.87

B. DeepFakesON-Phys

Table IV shows the test partition results for the fixed

validation threshold where DeepFakesON-Phys Vr. Celeb-

DF and PAD-Phys Vr. 2 models obtain BPCER values of

39.60% and 24.97%, respectively. Similarly, Table V shows

the results for the fixed threshold obtained in the validation

partition where DeepFakesON-Phys Vr. DFDC and PAD-Phys

Vr. 3 models obtain BPCER values of 42.45% and 29.03%,

respectively.

DeepFakesON-Phys models show a slight improvement in

ACER values of around 39.85%, in L2TP, PR, PrM, and

3CPM attacks decreasing by around 9.11% in ACER. This

performance shows that DeepFakes detection models give

us additional information for specific PAD and supports the

second hypothesis (H2).

Also, the results obtained from the PAD-Phys models shows

a reduction in the ACER for almost all the attacks, obtaining

an average ACER decrease of 15.7% and 20.65% for PAD-

Phys Vr. 2 and Vr. 3, respectively. Based on these results, the

third hypothesis (H3) proposed can be accepted.
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Fig. 2. ROC curves for each attack type in Veridas DB using the three models.

TABLE VI
AVERAGE BPCER, BFCER AND ACER OBTAINED BY ALL THE MODELS

USED IN THIS WORK.

BPCER APCER ACER

DeepPhys [24] 41.44 45.33 43.38
DeepFakesON Phys Vr. Celeb-DF [32] 39.60 38.79 39.19
DeepFakesON Phys Vr. DFDC [32] 42.45 38.60 40.52
PAD-Phys Vr.1 18.28 10.94 14.61
PAD-Phys Vr.2 24.97 22.01 23.49
PAD-Phys Vr.3 29.03 10.71 19.87

IV. CONCLUSIONS / DISCUSSIONS

This work explores the performance of models based on

remote photoplethysmography for presentation attacks detec-

tion. Videos with 11 types of attacks and diverse identities

were considered for this study. Our first approach, using

trained models for pulse detection and DeepFakes detection,

showed results not far from randomness with 43.38%, 39.19%,

and 40.52% in average ACER (See Table VI), evidencing

that physiological feature-based models could be helpful in

this problem. These results allow us to propose new models

based on rPPG and DeepFakes to be retrained for biometric

presentation attacks.

PAD-Phys models get better results for each presentation

attack instrument, with one exception in the VR attack, where

the performance in the three models does not significantly

change (see Figure 2). This attack is the only biometric

presentation attack in which the replayed user’s video can

still have physiological information that confuses the model in

the presentation attack detection, a problem already exposed

in the Related Work (see Section I-A3). Our models show

an overall increase in most attacks by an average ACER of

21.70% compared with the original models.

These results suggest that most of the biometric presentation

attacks in the database can be detected thanks to the fact

that the used attacks do not contain real pulse presence

as in presentation attack instruments such as paper, masks,

mannequins, and screens; except for the video-replay attack

Fig. 3. ROC curve - Veridas DB attacks. Comparison between the different
domain adaptation strategies.

where the PAD may be confused due to the real-time playback

of the user, and this may contain physiological information.

Finally, Figure 3 shows the mean ROC for all the mod-

els used in this work, evidencing the improvement in the

performance of the models in presentation attack detection;

this encourages us to continue exploring new approaches

based on physiological characteristics exploiting new learning

architectures such as transformers.
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