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ABSTRACT Identifying manipulated regions in images is a challenging task due to the existence of
very accurate image inpainting techniques leaving almost unnoticeable traces in tampered regions. These
image inpainting methods can be used for multiple purposes (e.g., removing objects, reconstructing
corrupted areas, eliminating various types of distortion, etc.) makes creating forensic detectors for image
manipulation an extremely difficult and time-consuming procedure. The aim of this paper is to localize the
tampered regions manipulated by image inpainting methods. To do this, we propose a novel CNN-based
deep learning model called IRL-Net which includes three main modules: Enhancement, Encoder, and
Decoder modules. To evaluate our method, three image inpainting methods have been used to reconstruct
the missed regions in two face and scene image datasets. We perform both qualitative and quantitative
evaluations on the generated datasets. Experimental results demonstrate that our method outperforms
previous learning-based manipulated region detection methods and generates realistic and semantically
plausible images. We also provide the implementation of the proposed approach to support reproducible
research via https://github.com/amiretefaghi/IRL-Net.

INDEX TERMS Image forensics, image inpainting, image manipulation detection.

I. INTRODUCTION

Image manipulation has become very convenient and ubig-
uitous nowadays due to the availability of some easy-to-
use tools like Adobe Photoshop. Some image manipulation
techniques can lead to misinterpretation, and thus malicious
use of the visual content, e.g.: moving some elements
from one region to another region (copy-move) [1], [2],
[3], copying elements from one image and pasting them
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on another image (splicing) [4], [5], [6], [7], [50], and
removal of unwanted elements [8]. Some of these techniques
leave very few traces behind, making the detection of
manipulated regions very challenging. For instance, recent
learning-based inpainting methods attempt to semantically
fill the corrupted region based on the overall scene, and the
missed region is continuously structured with uncorrupted
regions. Particularly, when the aim is to inpaint small
missing regions, the outputs of these methods visually look
very realistic. Even recent advances in inpainting methods
show that they can fill large missing areas with meaningful
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FIGURE 1. Examples of the proposed IRL-Net method predicting
manipulated regions. The examples in the first two rows are from Places2
[10] and the other two from CelebA [11] datasets which are inpainted by
the GC method [12] using the indicated Mask (c) , and then detected with
our method (d).

structures and objects that do not exist anywhere else in the
image [9].

Such advancements make the manipulation detection a
very challenging process [13], especially when the aim is not
only to discriminate manipulated images from the authentic
ones, but also to pinpoint tampered regions at the pixel level
[14]. Notably, different categories of GAN-based inpainting
methods [15] are trained using various sizes of masks which
enable them to predict small or large masked regions, leading
to, as shown in Fig. 1, inpainted images visually plausible
with almost no manipulation traces left around or inside the
inpainted regions [16]. In this paper, we address tampering
localization by focusing on unveiling the tampering traces left
by inpainting methods.

Due to the widespread usage of deep learning in many
fields, the community of multimedia forensics has been
inspired and driven to investigate if it is feasible to compel
a convolutional neural network (CNN) to learn manipulation
detection characteristics and record pixel value dependencies
caused by image tampering operations. The existing deep
learning-based methods can be classified into two main
categories. First, the methods that benefit from a noise map
of the input image generated either by pre-defined high-pass
filters [17] or trainable counterparts [18], [19]. For instance,
the spatial-domain rich model (SRM) [17], a non-trainable
layer, has been proposed to capture the local dependency
changes caused by manipulation techniques. The output of
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such layers is fed into a deep neural network (DNN), either
alone [19], [20] or together with the input RGB image [21],
[22], [23]. The approaches within the second category usually
do not use any special layer for detecting noise from the input
image. Instead, they utilize different network structures like
fully convolutional networks (FCN) [24], faster R-CNN [25],
and long short-term memory (LSTM) cells [26].

In this paper, we propose a novel method, named IRL-Net,
which uses the former approach where high-level features are
extracted from both the RGB image and a high-pass filtered
version of the RGB image. The extracted features from RGB
and high-pass filter can be concatenated together at different
stages for further processing. The concatenate stage of the
two feature branches is understudied and can be categorized
into three classes called early, middle, and late fusion [27].
In this paper, we will investigate different fusion strategies in
that regard, and our experiments show that the early fusion
model performs better than the other two fusion types.

We also perform end-to-end training to learn the
most discriminative features between manipulated and
non-manipulated regions through back-propagation using
ground truth labels and image mask information. To improve
the performance of detecting and localizing manipulated
image regions, different kinds of CNN-based approaches
have been presented to classify the image patch and pixel-
wise segmentation, and different inputs to the network
are taken into consideration. The proposed model achieves
promising results in patch classification, as well as in
localizing manipulated regions at pixel level. Our main
contributions can be summarized as:

o In this work, we propose a novel effective end-to-
end solution for localizing the manipulated regions
generated by inpainting methods. Our DNN-based
model, called IRL-Net, benefits from the advantages of a
new proposed attention layer. The code for our proposed
method is available on GitHub.'

« We utilize two effective blocks called attention and
up-scaling to predict very high-quality outputs. The
attention block is responsible to extract more infor-
mative features and the upscaling block placed in the
Decoder module assists to generate a super-resolution
with minimum checkerboard artifact issues in the output.

o The required datasets for training and validation have
been generated using two publicly available datasets
called Places2 and CelebA. Moreover, to inpaint the
masked regions, three well-known and recently pro-
posed inpainting methods have been used.

Il. RELATED WORKS

In this section, we first review recent works developed for
image inpainting and then present the methods that concern
the localization of inpainted areas.

1 https://github.com/amiretefaghi/IRL-Net
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A. IMAGE INPAINTING

The remarkable progress of DNNs provides the image
inpainting task with a great opportunity to produce very
realistic results, making it very arduous for human eyes
to recognize inpainted regions. These remarkable results
have made image inpainting to grow significantly in specific
application areas, e.g., face inpainting [28], and scene
inpainting [29]. Nowadays, image inpainting can assist in
removing, restoring, or reconstructing lost or corrupted part
of the image. Generally, existing inpainting models differ in
terms of the network structure. For example, some methods
follow the coarse-to-fine technique [12], [30] to gradually
refine the generated images. The two consecutive stages
(i.e., coarse and fine) respectively learn the missing regions
at the coarse stage and further refine the whole image at
the fine stage. Besides the coarse-to-fine structure, another
well-known structure called coarse-and-fine has the aim of
extracting global semantic information as well as multi-level
local features in parallel [30], [31].

B. LOCALIZING TAMPERED REGIONS
Detecting manipulated regions is a binary classification
problem where the classifier should decide about each pixel:
tampered or not. Traditional DNN-based solutions have tried
to localize the pixels manipulated by inpainting methods
usually had poor performance, mainly because they used
the specific content of the image at hand as their main
information source instead of content-independent features.
More recently, some approaches have been proposed to
look for the footprint of tampered pixels in a residual
space not focusing on the specific content of the image but
interpreting that the tampered regions mostly differ from the
untouched parts in terms of their noise distribution. In order
to construct a noise map, methods are categorized into two
groups: non-trainable and trainable. In [19] the noise map
provided by high pass filters (pre-filtering) is fed to four
Residual blocks followed by upsampling modules to achieve
pixel-wise prediction. However, Bayar et al. [18] proposed
a constrained convolutional layer (called Bayar layer) that
adaptively learns to suppress the image’s content and learns
manipulation detection features. Several methods [21], [22],
[25], [44], [45], [46] were proposed to leverage both the
noise map and content of the image to reduce the risk of
losing other useful information in the original RGB view.
Zhou et al. [25] proposed a two-stream fast R-CNN for
image manipulation detection, the RGB image, and its noise
counterpart generated by the spatial rich model (SRM) [17].
One stream extracts features to find tampering artifacts,
and the other one discovers noise discrepancies between
the tampered region and untouched parts. The Manipulation
Tracing Network (ManTra-Net) [22] uses not only the RGB
view but also two noise counterparts: SRM [17] and Bayar
layer [18]. ManTra-Net decomposes to a feature extraction
part followed by a LSTM based detection module. The
Spatial Pyramid Attention Network (SPAN) [21], similar to
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ManTra-Net [22], leveraged SRM [17], Bayar layer [18], and
RGB view for its feature extraction module’s fed. The Image
Inpainting Detection Network (IID-Net) [8] leveraged the
incorporation of the SRM layer, Pre-Filtering layer [19], and
Bayar layer [18]. The fusion of three streams was fed to an
extraction block designed by the Neural Architecture Search
(NAS) algorithm, followed by a decision block encompassing
global and local attention modules to reduce intra-class
inconsistency.

On another front, edge-supervised approaches have been
recently presented in some related papers [23], [24], [32],
[47], [48], [49] aiming to trace various manipulation types.
Methods that exploit edge-supervised techniques look for
boundaries around tampered areas. Nevertheless, this strategy
is not practical to fulfill the purpose of localizing high-quality
inpainting methods whose boundaries are almost imper-
ceptible. For instance, Multi-View Multi-Scale Supervised
Networks (MVSS-Net) [23] exploits tampering boundary
artifacts by using an edge-supervised method alongside the
noise view of the input image and RGB view.

The methods combining the RGB stream and its noise
counterpart have a fusion part categorized into early, middle,
or late-stage fusion [27]. Accordingly, ManTra-Net [22],
SPAN [21], and IID-Net [8] have an early fusion part for
concatenating features of the two corresponding streams.
However, other methods [23], [25] proposed late fusion so
each stream provides deeper-layer features before concatena-
tion. Notably, to the best of our knowledge, middle fusion has
not been studied for inpainting manipulation localization.

Due to the limited availability of implementations for other
methods, we conduct a comparative analysis between the
results of our proposed method and two recent alternatives,
namely MVSS-Net [23] and LDICN [19].

llIl. PROPOSED METHOD

The overview of our proposed method, including three
main modules named Enhancement, Encoder, and Decoder,
is shown in Fig. 2. The Enhancement module receives the
manipulated image and tries to enhance inpainting traces.
Then, the Encoder module, which is using a residual block,
is intended to extract high-level features that assist to
discriminate the manipulated region from the rest of the
image. Finally, the Decoder module generates a predicted
inpainting mask with the help of an Attention block and
Pixel-Shuffle upscaling blocks.

A. ENHANCEMENT MODULE

Generally, standard convolution layers learn features to
represent the contents of input images rather than extracting
the required features for detecting the traces left behind by
inpainting methods. Notably, the majority of these traces are
hidden in local noise distributions, and usually RGB channels
are not sufficient to deal with all types of manipulation traces.
Considering this, with the aim of suppressing ineffective
content of the input image and more significantly capturing
the inpainting traces, a special predesigned layer called

115679



IEEE Access

A. E. Daryani et al.: IRL-Net: Inpainted Region Localization Network via Spatial Attention

Encoder

1
|
|
|
|
|
|
|
|
|
|
|
|| 256%256x32
|

|

5x128x128x64

.

-Resi Attenti
. Bayer . Conv. Relu SE-Residual . on
Block

7X64x64x128

Decoder

! I
|
| | |
| | |
| | |
| | |
| | 1
| i ‘
| | ‘
| | ‘
| i ‘
| | 1
| | ‘
: - ¢ 2 2 |
i OO L v g | | ’ }
! |
. ‘ | ‘
| | ‘ |
! I y ) ika)
| 7X32X32X256 | N ~ |
| | e |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
! |
| | |

[

I
|
| N ~
| N \\
} N S
\ S
} N s
e ~
| N S
| S\, =5
| Y ey
__________ N e el
_ P 7
pscaling Si .
igmoid
‘ Block g

FIGURE 2. Overview of our proposed inpainted region localization Network (IRL-Net) architecture including three main modules

called Enhancement, Encoder, and Decoder.

Bayar [18] has been used. Therefore, we adopt the Bayar
layer as one of the early layers of the Enhancement module
to learn low-level prediction residual features to detect the
inpainting traces. The Bayar layer reaches this goal by adding
specific constraints to the standard convolution layer in the
following way. Let Wli represent the ith channel (for RGB
input image i = 1,2, 3) channel of the weights W}, in the
Bayar layer. The following the constraints are enforced on
each channel of W}, before each training iteration:

[ Wi0,0)=1
i —
Zm’n#o Wim,n) =1

where Wg(O, 0) indicates the center of ith channel of the
weights W), in the Bayar layer. Then, we concatenate the
extracted features by the Bayar and convolution layers and
feed them to a Multi-Scale Convolution (MSC) block. As the
scale of generated noise (manipulated traces) by inpainting
methods vary, introducing multi-scale feature extraction can
help to learn more robust convolutional filters, and thus more
informative features will be extracted. The MSC block has
three convolution layers with the size of x x 3 x 3, x x 5 x 5,
and x x 7 x 7, where x is the number of filters in each layer.
Finally, we concatenate the output of each layer and transmit
it to the next module (i.e., the Encoder module).

i=1,2,3 (1

B. ENCODER MODULE

To extract high-level features, an Encoder module, including
four residual units each of which is filled with residual
layers, has been placed after the Enhancement module. Using
the residual architecture [33] to avoid vanishing/exploding
gradients, the Encoder module can assist to extract more
abstract features. As shown in Fig. 3 (a), a residual block

115680
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(b) SRResNet (c) SE-Residual

FIGURE 3. Different version of Residual blocks a) The original version of
Residual block b) The last Relu block has been removed c) Batch
Normalization block removed and SE Block added.

is a stack of layers set in a way that the output of a layer
is taken and added to another layer deeper in the block.
The non-linearity is then applied after adding it together
with the output of the corresponding layer in the main path.
This bypass connection is known as shortcut or the skip
connection.

1) SE-RESIDUAL BLOCK

An effective residual block called SE-Residual proposed
by [34] has been used to prevent: a) decreasing the
flexibility of the network for extracting features, and b)
increasing the number of feature maps leading to numerically
unsuitability during the training phase. Here, the SE-Residual
block has been used besides the two original [33] and
SRResNet [35] residual blocks. In the SE-Residual block, the
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FIGURE 4. Squeeze and excitation block.

batch normalization layers are removed to provide various
flexibility ranges for extracting features, as Nah et al. [36].
Moreover, instead of increasing the number of convolution
layers or feature maps to improve the performance, this
SE-Residual unit improves the representational power of the
network by enabling it to perform dynamic channel-wise
feature recalibration. As shown in Fig. 4, as part of this
process, the block squeezes each input channel into a single
numerical value using Global Average Pooling. The second
step of this block is to extract information from the input by
two Fully-Connected layers (FC). The first FC layer exploits
the ReLU activation function and reduces the output channel
complexity. A sigmoid activation function is used in the
second FC layer, which gives each channel a smooth gating
function. In the end, the block weights each feature map of
the input according to its channels: the “‘excitation”.

C. DECODER MODULE

To map the learned high-level features extracted by the
Encoder module into low-level discriminative information,
the Decoder module has been placed as the last module of
our proposed method. The output of the Decoder module is
a mask image (black and white image) showing the manip-
ulated region by white pixels (positive class) and pristine
regions by black pixels (negative class). The Decoder module
receives high-level features at lower-scale in comparison to
low-level mask images, therefore it should upscale features to
generate an appropriate mask image. This upscaling process
is performed by a PixelShuffle block (described in the next
section) as shown in Fig. 2. During this process, misclassified
pixels may be generated in the mask image, due to the
ineffectiveness of convolutional neural networks in modeling
long-term feature correlations. To track this problem, many
attention blocks have been proposed and used recently in the
decision phase of networks. In this line of work, we designed
an attention block and use it in the decoder to generate
the mask image in an accurate way. This attention block
aims to reduce the number of misclassified pixels through
a very effective technique: using knowledge of the Encoder
module to assist the Decoder module to build an appropriate
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FIGURE 5. Attention block.

features map. The attention map is directly computed on the
decoder and encoder features. After obtaining the attention
scores, we use these to compute attention on decoder features,
as shown in Fig. 5.

1) UPSCALING BLOCK

A special upscaling block called PixelShuffle has been used
to construct a high-accurate output (mask image). The tradi-
tional upscaling usually starts with some kind of interpolation
(e.g., bilinear) which usually leads to checkerboard artifact
issues. To reduce those artifacts Shi et al. [37] introduced
PixelShuffle which is an operation used in super-resolution
models to implement efficient sub-pixel convolutions with a
stride of 1/r. Specifically, PixelShuffle rearranges elements
in a tensor of shape (None, W, H, C x r2) to a tensor of shape
(None, W xr, H xr, C). As shown in Fig. 2, we have used one
PixelShuffle operation for x2 upscaling and two PixelShuffle
operations for x4 upscaling.

2) ATTENTION BLOCK

This attention block is inspired by self-attention, hence, this
attention block has three variables known as Query/Key/Value.
Queries are a set of vectors you want to calculate attention
for. Keys are a set of vectors you want to calculate attention
against. Dot product multiplication gives you a set of weights
(also vectors) indicating how attended each query is against
Keys. Based on our purpose and this definition, we use
features of the Encoder module as query and futures of the
Decoder module as key. Under this condition, the attention
block uses the knowledge of the Encoder module to assist
the Decoder module to build an appropriate features map.
As shown in Fig. 5, the features of the Decoder module (X)
and Encoder module (f) are fed into 1 x 1 convolution layers,
and the outputs are then reshaped to the feature maps Q and
K, respectively:

0 = Fr(Wyf) )
K = F;(WiX) 3)

where F, is the reshape function to convert the height and
width dimensions of the feature map into one dimension
while F,; is the F, followed by a transpose operation. Then,
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the spatial attention of each location is defined as follows:
exp(K;Q))
> ep(KiQ))

where each element A}/ of the spatial attention map Ay
represents the correlation extent between the ith position
and the jth position to model the long-range dependency.
Simultaneously, X is also fed into a 1 x 1 convolution layer
to generate a feature map, which is then reshaped. A matrix
multiplication operation between V and A; is performed and
then the result is reshaped back to R *#*C for generating
the attended feature map X as follows:

Xs = VAS (5)

A = “)

Finally, we multiply X; by a scale factor « and add with
the input feature map X to generate the final output of the
attention block as follows:

0=aX,+X (©6)

where « is a learnable parameter and is initialized with
0. By introducing «, the network starts from learning
correlations around local regions, and then extends to learn
the long-range dependency between different regions across
the feature map.

Notably, in typical spatial attention, Queries and Keys
are derived from the same feature map within a module.
However, this paper’s mechanism separates Queries from
the Encoder module’s feature map and Keys/Values from
the Decoder module’s feature map. This innovative method
captures alignment and correlation between Encoder knowl-
edge and Decoder predictions. A strong correlation results
in a higher dot product, prompting the Decoder to extract
more information from corresponding positions in its feature
map. This introduces knowledge infusion from the Encoder,
enhancing the Decoder’s decision-making. Aligned Query
and Key positions emphasize relevant Encoder knowledge,
aiding accurate feature map construction. This unique spatial
attention acts as a bridge, fostering collaboration between
Encoder and Decoder through alignment-based learning.

D. LOSS FUNCTIONS

The proposed model is trained in a supervised manner. In the
training process, we have used two types of loss functions:
a) Fused Focal (FF) loss, and b) Dice loss. With the aim of
having an end-to-end training process, we define the total loss
L as:

L= LFused + LDice (7)

1) FUSED FOCAL LOSS

Using FF loss, the class imbalance is mitigated (the areas
that have been inpainted are often small when compared
with the entire image). A FF loss function [38], [39]
addresses class imbalance during training in tasks like
object detection. The FF loss focuses on learning on hard
misclassified examples by applying a modulating term to
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the cross-entropy loss. This is a dynamically scaled cross-
entropy loss, in which the scaling factor becomes zero as
confidence in the correct class increases. In a nutshell, this
factor automatically down-weights the contribution of easy
examples during training in order to focus the model on
problems of difficulty more rapidly. However, in most of the
inpainting-based forgeries, the inpainted areas are relatively
smaller than the pristine ones, resulting in a class imbalance.
As a consequence, the trained model tends to classify the
samples as pristine more often. In order to address this
issue, we propose to incorporate the FF loss into the binary
cross-entropy loss, creating a FF loss function. A «-balanced
variant of the FF loss is typically defined as follows:

n
Lrused = — Y a(1 — M;)*M;log M;
i

F (=)W= My log(l — M) (8)

where M; and M; are predicted output and grand-truth
respectively, and n is the size of output vector. In particular, A,
is a focusing parameter that can smoothly adjust how easily
examples are down-weighted. Clearly, when A = 0, the focal
loss is the same as the cross-entropy loss, and as \ increases,
so does the impact of the modulating factor. We evaluate
different choices of A\ € (1, 2, 3), and empirically find that A
=2 works best in the experiments. In addition, « is the weight
assigned to the rare class for further adjusting imbalanced
classes. We hence set « = 0.75 to balance the rare class.

2) DICE LOSS

Dice loss [40] is widely used in medical image segmentation
tasks to address the data imbalance problem. It only addresses
the imbalance problem between foreground and background
but overlooks another imbalance factors between easy and
hard examples.

23 W, - M
~2
ZHXWMi +Z{‘1XWM12

i

©)

Lpice = 1 -

IV. EXPERIMENTS AND DISCUSSION

In this section, we first introduce the experimental settings,
then evaluate our proposed method on newly generated
datasets based on Places2 [10] and CelebA [11]. We compare
the results of our proposed method with two other recent
methods called MVSS-Net [23] and LDICN [19]. For
quantitatively measuring the performance difference among
the methods, we utilize several statistical metrics. Finally,
we report an ablation study on the effects of the residual block
and the attention block in our proposed method.

A. TRAINING SETTING
We train the networks using the Adam optimizer with an

initial learning rate of le*. All of our experiments are run
with a Nvidia Tesla P100 GPU.
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LDICN Ours

Original

Inpainted MVSS-Net

FIGURE 6. Quality comparison among our method and other methods on
CelebA. The second column of each row shows the inpainted image using
the mask in the last column (Ground Truth, GT), which is detected using
the two reference methods (MVSS-Net and LDICN) and Ours.

B. DATASETS

We prepared the training and test data by exploiting Places
[10] and CelebA [11] datasets. We used three different
deep inpainting approaches, approaches including GC [12],
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FIGURE 7. Quality comparison among our method and other methods on
Places. The second column of each row shows theinpainted image using
the mask in the last column (Ground Truth, GT), which is detected using
the two reference methods (MVSS-Net and LDICN) and Ours.

CA [41], and EC [42] to generate inpainted images on the two
mentioned datasets. For each of the two mentioned datasets,
we randomly selected (without replacement) 50K and 10K
images to create training and test subsets, respectively. For
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TABLE 1. Quantitative results over Places2 dataset for IRL-Net and other
compared methods (LDICN, MVSS-Net). The best result of each column is
boldfaced.

Method hll\ﬁiltﬁggg mloU sfolre Precision | Recall
LDICN 85.87 | 83.77 | 96.50 | 74.01
MVSS-Net GC 4340 | 1.56 19.09 0.82
Ours 90.62 | 92.86 | 98.89 | 87.76
LDICN 89.09 | 86.28 | 98.31 | 76.87
MVSS-Net CA 43.61 | 2.94 26.19 1.56
Ours 91.76 | 93.72 | 99.59 | 88.51
LDICN 85.26 | 83.41 | 96.07 | 73.70
MVSS-Net EC 43.38 | 2.98 20.85 1.60
Ours 90.20 | 92.39 | 98.20 | 87.23

inpainting images, mask generation is an important factor.
To simulate more diverse and complex real-world scenarios,
we utilize the irregular mask setting in GC with arbitrary
shapes and random locations for both training and testing. We
underscore that this approach enables us to attain masks with
diverse shapes and positions, thereby promoting variability
in both our training and testing stages. Hence, our generated
datasets contain tuples of the inpainted image and generated
mask. (See Figs. 6 for example masks.).

C. EVALUATION METRICS

Four commonly used pixel-wise classification metrics,
including Recall, Precision, mean Intersection over Union
(mlIoU), and F1-score, are adopted to evaluate the perfor-
mance. The metrics are calculated on each image indepen-
dently, and the mean values obtained over all images are
reported in the following experiments. The mloU metric is
preferred since it is not affected by imbalanced classes. The
Precision metric demonstrates how many instances that have
been predicted true are really true. Meanwhile, Recall shows
how many true positive instances are predicted correctly. F1-
score is also used to combine the Precision and Recall metrics
into a single metric.

D. COMPARISON WITH PREVIOUS WORK
In this section, we compare our proposed method with two
state-of-the-art methods. However, for a fair comparison,
we consider two main criteria to choose an appropriate
state-of-the-art: a) Pre-trained models released by paper
authors, and b) Source code publicly available. Accordingly,
we have chosen MVSS-Net [23] and LDICN [19] for a
fair comparison. MVSS-Net [23] was pre-trained on the
CASIAv2 and DEFACTO datasets. We trained LDICN [19]
again using the code provided by the authors on our datasets.
Therefore, we have two detection networks (LDICN [19]
and MVSS-Net [23]), six training datasets created using three
inpainting methods (GC [12], CA [41], and EC [42]), and
two testing datasets (Places2 [10] and CelebA [11]). All of
our experiments are run separately for Places2 and CelebA.
The performance of the two reference detection networks and
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TABLE 2. Quantitative results over CelebA dataset for IRL-Net and other
compared methods (LDICN, MVSS-Net). The best result of each column is
boldfaced.

Method Irﬁzltﬁggg mloU sclj)lre Precision | Recall
LDICN 85.87 | 83.77 | 96.50 | 74.01
MVSS-Net GC 4342 | 1.65 21.37 | 00.85
Ours 90.77 | 92.82 | 98.68 | 87.62
LDICN 88.63 | 86.01 | 98.02 | 76.62
MVSS-Net CA 4340 | 2.21 37.06 1.14
Ours 91.87 | 93.81 | 99.68 | 88.58
LDICN 76.76 | 73.60 | 89.96 | 62.28
MVSS-Net EC 43.33 | 2.08 19.14 1.10
Ours 87.50 | 89.44 | 9591 | 83.79

our proposed detection network are shown in Table 1 and
Table 2.

1) QUANTITATIVE PERFORMANCE EVALUATION

As shown in Table 1 and Table 2, our proposed method
outperforms existing methods by a large margin in all test
scenarios. In the following, we will provide a detailed
analysis of these results.

The detection results are reasonably good for LDICN
(retrained on our datasets), but anyway worse than the
ones obtained by our proposed ILR-Net. On the other
hand, MVSS-Net is pre-trained on CASIAv2 and is reported
to have a very good performance on that dataset, but
its performance drops drastically here on our inpainting
methods and datasets. Such poor generalizability indicates
that MVSS-Net tends to overfit focusing on the artifacts
of a particular inpainting method and fails to consider the
common characteristics of different inpainting techniques.
This is a common problem in image manipulation detection,
the lack of generalization capabilities [16]. As discussed
before, this generalization can be improved by properly
exploiting the noise information contained in real versus
inpainted contents. This also indicates that noise pat-
terns are indeed a reliable cue for detecting inpainted
regions.

2) QUALITATIVE PERFORMANCE EVALUATION

Using visuals, we present a qualitative comparison of the
detected masks. Figs. 6 and 7 illustrate examples of LDICN
and MVSS-Net using Places2 and CelebA. LDICN and
MVSS-Net, however, cannot accurately identify the inpainted
regions, especially when they are complex. Our proposed
method achieves very good results on test samples of different
inpainting methods.

E. FUSION EXPERIMENT

Our proposed method uses two kinds of information: noise-
based information and RGB-based information, correspond-
ing respectively to the Bayar and Convolution layers in Fig. 2
right after the input image. It is important to combine and
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FIGURE 8. The proposed middle and late fusion architectures.
TABLE 3. Comparison of three fusion techniques.

Architecture | mloU | Fl-score | Recall | Precision
early-fusion | 90.62 92.86 87.76 98.89

middle-fusion | 89.95 92.71 88.08 97.85
late-fusion 90.14 92.55 87.59 98.12

TABLE 4. Impact of SE-Residual and attention blocks on performance.

Architecture | mloU | Fl-score | Recall | Precision
w BN 89.49 92.62 88.29 97.39
w/o BN 89.80 92.23 87.20 97.88
w/o BN w SE | 90.12 92.15 86.71 98.31
w Attention | 90.62 92.86 87.76 98.89

fuse this information at a specific stage in order to carry
out further processing. Note that, in Fig. 2, that fusion is
implemented in the Enhancement module via a concatenation
operation in a kind of early fusion. Here, we analyze other
architectures for combining the RGB and noise information.
For this purpose, we consider three types of fusion: early
fusion, middle fusion, and late fusion. We used early fusion
in our proposed method represented in Fig. 2 combining
the mentioned information right after the first layer. For
middle fusion (see Fig. 8 (a)), more information is extracted
from the noise-based and RGB-based channels. Thus, in the
Enhancement stage, we have two branches that extract
information separately, and at the end of the Enhancement
stage, we combine the extracted information. For late-fusion
(see Fig. 8 (b)), we use two independent branches based on
RGB and noise information all throughout the Enhancement
and Encoder stages. In this case, we place the fusion function
(again feature concatenation) after the Encoder stage. Table 3
shows the measured quantitative results for the three fusion
methods. As can be observed, the early-fusion technique
outperforms the other two fusion methods.

F. ABLATION STUDY: RESIDUAL AND ATTENTION UNITS

In this section, we quantitatively analyze the impact of the
proposed SE-Residual and Attention blocks in our model.
As shown in Table 4, each of the two components in
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IRL-Net contributes in different ways to its performance.
By comparing the statistical results presented in Table 4
with those of previous residual blocks, our suggested
residual block extracts the necessary information quite well.
The attention block combines asymmetrically two separate
feature embeddings of the same dimension, in contrast,
the self-attention input is a single feature embedding.
The quantitative results demonstrate the advantages of the
attention block.

V. CONCLUSION

To improve the performance of detecting and localizing
manipulated image regions, this paper has proposed a novel
method, named IRL-Net (Inpainted Region Localization
Network). The proposed method uses high-level features
extracted from both the RGB image and a high-pass filtered
version of the RGB image concatenated at some stage for
further processing. It also performs end-to-end training to
learn the discriminative features between manipulated and
non-manipulated regions through back-propagation using
ground truth and masked image. IRL-Net consists of two
important feature designs: a) a new Residual block based on
Squeeze-and-Excitation, and b) an Attention block combines
the two feature embeddings according to their information.
IRL-Net achieves promising results in localizing manipulated
regions at pixel level on testing datasets. Future work includes
analyzing and improving the generalization capabilities
specially against unseen manipulations [16], [43], and further
exploration of more sophisticate fusion architectures [27]
combining image contents and noise elements.
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