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Over the past years, deep learning capabilities and the availability of large-scale training datasets advanced rap-
idly, leading to breakthroughs in face recognition accuracy. However, these technologies are foreseen to face a
major challenge in the next years due to the legal and ethical concerns about using authentic biometric data in
AI model training and evaluation along with increasingly utilizing data-hungry state-of-the-art deep learning
models. With the recent advances in deep generative models and their success in generating realistic and
high-resolution synthetic image data, privacy-friendly synthetic data has been recently proposed as an alterna-
tive to privacy-sensitive authentic data to overcome the challenges of using authentic data in face recognition de-
velopment. Thiswork aims at providing a clear and structured picture of the use-cases taxonomyof synthetic face
data in face recognition along with the recent emerging advances of face recognition models developed on the
bases of synthetic data. We also discuss the challenges facing the use of synthetic data in face recognition devel-
opment and several future prospects of synthetic data in the domain of face recognition.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The breakthroughs of deep neural networks and their training opti-
mizations as well as the availability of large-scale identity-labeled face
datasets have reshaped the research landscape of face recognition
(FR) over the past years. These emerging technologies have dramati-
cally improved FR performances leading to the wider integration of FR
in a variety of applications from logical access control and consumer
low-end devices to automated border control. State-of-the-Art (SOTA)
FR models [1,2] utilized large-scale face datasets e.g. CASIA-WebFace
[3], MS-Celeb-1M [4], or VGGFace2 [5] to train deep neural networks
(DNN) with millions of trainable parameters, where the goal is to
optimize the empirical risk minimization function given input training
samples, their corresponding labels, and DNN trainable parameters.
Achieving such a goal without being over-optimized, i.e. overfitted, re-
quires that training datasets are of large scale (massive number of im-
ages of many identities) and representative of various variations that
exist in the real world. Large and representative data is also required
to evaluate FR accuracies against different variations that present in
real operation scenarios e.g. pose, aging, occlusion, or lighting. Data is
required to evaluate the vulnerability of FR against different types of at-
tacks such as morphing, presentation, master-face, and deep fake
tros).
attacks. FR components, face processing models, attack detectors, and
face image quality estimation models are not different as they require
face data for training and evaluation. Besides the technical limitation
of collecting large-scale data with realistic variations, there are in-
creased concerns about collecting, maintaining, redistributing, and
using biometric data due to legal, ethical, and privacy concerns [6].
Consequently, many widely used datasets for FR development such as
VGGFace2 [5] and MS-Celeb-1M [4] have been retracted by their
creator. Table 1 summarizes the most widely used datasets to train FR
models. Even though many of these datasets have been publically re-
leased, there are not any more accessible.

Processing biometric data is governed by a set of legal restrictions
[6]. Taking the General Data Protection Regulation (GDPR) [6] as an
example, it categories biometric data as a special category of personal
data subjected to rigorous data protection rules [7], requiring high protec-
tion in connection with fundamental rights and freedoms of individuals.
Dealing with such data requires adherence to one of the exemptions of
biometric data processing [8], the related national laws [9], maintaining
processing records [10], and the preparation of data protection impact as-
sessment [11,12], among other restrictions. Depending on the purpose of
the biometric data processing, this set of restrictions can be rigorously
extended [13–15]. Besides the legal complications of using and sharing
biometric data, ethical requirements are commonly necessary, such as
the approval of an ethics committee or competent authorities.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.imavis.2023.104688&domain=pdf
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Table 1
Overview of themost widely used authentic and synthetic facial datasets commonly used to train FRmodels, alongwith the number of images, identities, images per identity, and the fact
that each database is public and/or still accessible. Note thatmany of the public databases are not accessible (raising a practical problem for researchers and developers) anymore based on
legal and ethical concerns and even those that are available are ethically questioned as the individual consent of the data subjects is not always insured.

Name Year # Images (m) # Identities (k) Avg. Public Accessible Authentic

CASIA-WebFace [3] 2014 0.5 10.6 47 ✓ × ✓

DeepFace [19] 2014 4.4 4.0 1092 × × ✓

FaceNet [20] 2015 200.0 8,000.0 25 × × ✓

Facebook [21] 2015 500.0 10,000.0 50 × × ✓

VGGFace [22] 2015 2.6 2.6 992 ✓ × ✓

CelebFaces [23] 2016 0.09 5.4 16 ✓ ✓ ✓

MS-Celeb-1M [4] 2016 10 100.0 100 ✓ × ✓

MegaFace2 [24] 2017 4.7 672.0 7 ✓ ✓ ✓

UMDFaces [25] 2017 0.4 8.3 46 ✓ × ✓

VGGFace2 [5] 2018 3.3 9.1 363 ✓ × ✓

IMDbFace [26] 2018 1.7 59.0 29 ✓ ✓ ✓

MS1MV2 [2,4] 2019 5.8 85.0 68 ✓ × ✓

MillionCelebs [27] 2020 18.8 636.0 30 × × ✓

WebFace260M [28] 2021 260 4,000.0 65 ✓ ✓ ✓

WebFace42M [28] 2021 42 2,000.0 21 ✓ ✓ ✓

SynFace [17] 2021 0.5 10 50 ✓ ✓ ×
DigiFace-1M-A [29] 2022 0.72 10 72 ✓ ✓ ×
DigiFace-1M-B [29] 2022 0.5 100 5 ✓ ✓ ×
SFace [16] 2022 0.63 10.6 60 ✓ ✓ ×
USynthFace [18] 2022 0.4 0.4 1 ✓ ✓ ×
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The increased concerns about the legal and ethical use of authentic
data in biometrics along with the technical limitation in collecting
large and diverse face datasets motivate recent works to propose the
use of synthetic data as an alternative to privacy-sensitive authentic
data in FR training [16–18]. In an attempt to provide a clear understand-
ing of the feasibility of utilizing synthetic face data to train, evaluate, at-
tack, or privacy enhancement, this work is the first to analyze the
properties needed of the synthetic data for FR, the use-cases taxonomy
of synthetic data in FR, the current state of synthetic-based FR, the lim-
itations and challenges facing the use of current synthetic face data in
FR, and possible future research directions that might give a larger
space for synthetic data in different aspects of FR development.

2. Where is the synthetic data used?

To analyse the properties of the needed synthetic data, one should
start by building a clear taxonomy of the different possible uses-cases
of synthetic data in its interactionwith FR. This taxonomyherewill con-
sider the operations where the synthetic data is used to interact with
the recognition part of FR systems, i.e. the feature extraction. Therefore,
synthetic data that is meant to interact with other system components,
as defined in ISO ISO/IEC 19795–1:2021 [30], are out of scope, e.g. syn-
thetic data used to train or evaluate face detection or segmentation so-
lutions. Additionally, synthesizing faces as a means of domain
transformation, e.g. from thermal to visible face appearance [31] is
also out of scope as it just transfers the appearance of the image.

Fig. 1 presents the use-case taxonomy of the synthetic face data in-
teraction with FR. These use-cases are categorised under 4 groups,
along with the properties of the possibly needed data under each cate-
gory (the latter will be discussed in detail in the next section). The four
use-case categories are discussed in the following.

1. Training FR:Modern FR solutions are based on deep learningmodels
that are either trained directly to generate identity-discriminant
feature representations (e.g. triplet loss [20]) or to classify the
identity classes in the training data (e.g. ArcFace [2], ElasticFace [1],
etc.). In the latter approach, embeddings proceeding the classifica-
tion layer of the network are then used to extract the identity-
discriminant representations. This family of approaches is currently
2

predominantly leading to SOTA FR performances. In both cases,
training face data that represents the high inter and intra-class diver-
sity of real applications is needed to train the models. As mentioned
in the introduction, the diversity of such data, if authentic, is limited
by practical data collection constraints, and its collection and han-
dling are hedged by privacy, legal, and ethical concerns. Synthetic
data can come in handy to train such FRmodels in differentmanners
based on the training requirements. If the model is trained in one of
the two approaches mentioned above, then the synthetic data has to
contain a large number of identities and multiple samples of each
identity. If the model is trained on partially authentic data, however,
the intra-class variation of this data is low, then the synthetic data
needs to contain multiple samples for each of the authentic identi-
ties, i.e. act as an augmentation strategy. Finally, if the FR model is
trained in an unsupervised manner, then the synthetic training
data is not largely concerned with the identity grouping, but rather
just requires a set of faces of random identities. This data has also
been shown to be successful in training processes during the
training-aware quantization of models based on full precision pa-
rameters [32]. Although it is out of the scope of this work, synthetic
faces of this kind can also be used to train face detectors, face
segmentation, and attack detection methods (e.g. morphing attack
detection [33]).

2. Evaluating FR: FR algorithmic evaluation, following the ISO ISO/IEC
19795–1:2021 [30], requires the existence of a large set of genuine
(same identity) and imposter (different identity) face image pairs
that represent the real operational scenario. The need for a large
number of these pairs is intensified by the ever-more accurate per-
formance of FR algorithms. FR algorithms can produce two main al-
gorithmic errors, genuine pairs classified wrongly as imposters
(false non-match (FNM)) or imposter pairs classified wrongly as
genuine (false match FM). As the algorithms produce lower and
lower rates of decision errors, the FM rates (FMR) and FNM rates (F
NMR), the number of evaluated pairs required to produce statisti-
cally significant evaluation results become higher. This need for
large-scale evaluation data is one of themainmotivations behind re-
quiring synthetic data for the evaluation. Another reason is that some
authorities that require in-house testing on their own data when
purchasing FR solutions do only possess a single image per identity



Fig. 1.A taxonomy of the synthetic data use-cases (on the top of thefigure) directly interactingwith FRmodels, either by training them, evaluating them, attacking them, or enhancing the
privacy of the information extracted by them. This taxonomy lists the existing and foreseen synthetic data types that are needed by these use-cases (under each use-case). These data
needs are grouped by their main properties by color and discussed, along with the use-cases in this paper.
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in their databases (think of visa systems) and thus it is impossible to
have genuine pairs to evaluate FR algorithms. Such situations would
require synthetic data to be generated so it belongs to a certain au-
thentic identity, but with realistic variations. In a third scenario
where the operation scenario would require a very low FMR, the
need for a huge number of imposter pairs is required to evaluate,
with statistical significance, the FMR. In such cases, random synthetic
faces with random identities can be used to create such imposter
pairs. Again, although it is out of the scope of this work, these syn-
thetic faces, regardless of their identity information, can be used to
evaluate face detectors, face segmentation, and presentation/
morphing attack detection.

3. Attacking FR: Commonly, developers would use technology to
enhance the convenience and security of individuals and societies.
However, technology can also be used maliciously to create attacks
on individuals, systems, and societies. This is the case also with
synthetic face data, which can also be used as an attack. Synthetic
data can be created so that a certain face can be matched with
two or more faces. This can target automatic FR comparison or
human image verification, or both. Such attacks can be face
morphing attacks, where an image is generated to match two or
more identities, then used on an identity or travel document with
the alphanumeric data of when the targeted matches. Later such
a document can be used by the other targeted identities illegally,
leading to a serious security threat. Another attack in the same cat-
egory is the MasterFace attack, where the synthetic face is created
to match a wider proportion of the population, raising many secu-
rity threats. The second type of attack by generated face images
might focus on generating a face image of a specific identity. Such
attacks are commonly referred to as Deep-Fakes and they are com-
monly used to fool the viewer into wrongly believing that a certain
person has said or done an action in an image or a video. A third
attack can use synthetic faces that maintain a certain identity but
excludes a specific pattern with the aim of attacking a biometric-
based system that ensures a legal operation of a process. Such an
attack can be by presenting the attacker’s real identity, but exclud-
ing the information that points out that the user is underage, in a
service that requires age verification.
3

4. Enhancing the privacy for FR users: Although excluding certain
patterns from generated images of specific identities can be seen as
an attack on biometric systems, in different use-cases, they can be
seen as a privacy-enhancing tool when they are used to avoid the il-
legal or unconsented processing of the data. Such generation of the
data aims atmaintaining a certain set of visual patterns but removing
the clues of a specific pattern. Depending on the use-case, this ex-
cluded pattern can be related to the identity in what is widely
known as image-level face de-identification, which is defined
under the standard ISO/IEC 20889:2018 [34]. The excluded pattern
can be related to certain soft biometric attributes like age or gender,
which is commonly referred to as soft-biometric privacy enhance-
ment. Although it is out of the scope of this work, the generated
faces can exclude patterns that makes them detectable to face detec-
tion tool, i.e. excluding the information that makes the face a face in
the view of automatic face detection.

So far, we presented a discussion on the possible use-cases of syn-
thetic face data in FR. Each of these use-cases has different needs when
it comes to synthetic data. These needs are discussed in the next section.

3. What data is needed and what properties make it good?

The properties of the needed synthetic data under the different use-
cases (discussed in the previous section) are grouped by their required
properties under different colors in Fig. 1 and are discussed in detail in
the following:

1. Single faces of random identities: As detailed in the previous sec-
tion, and illustrated in Fig. 1, synthetic face images of random identi-
ties without the requirement of multiple images to belong to one
identity can be used for training FR models in an unsupervised man-
ner. They additionally can be used to evaluate FRmodels, specifically
evaluate the FMR, especially when the targeted operational point is
at a very low FMR, requiring an extremely large number of diverse
imposter pairs to make the evaluation result statistically significant.
Here, such data should be realistic, i.e. act like authentic data when
processed by the FR model. A successful way to measure that was
proposed in [32] and it is based on comparing the activation function
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value ranges in the FRmodel when processing authentic data versus
when processing the synthetic data. Additionally, the distribution of
the comparison scores between pairs of these single images of ran-
dom identities should theoretically be similar to those of imposter
comparisons of authentic data to ensure the similarity to the authen-
tic inter-identity variation, which was explored in [18].

2. Multiple faces per random identity: This kind of data represents
what one would typically expect from FR training or evaluation
data. That is, multiple identities, with multiple images per identity.
This, given a sufficient inter and intra-class (identity variation), can
be used to train an FR model in a supervised manner. This also
would contain both imposter and genuine pairs to evaluate the per-
formance of FR by calculating both possible errors, FMR and F NMR.
Such data should also interact with the FRmodel similarly to authen-
tic data, this asmentioned earlier can bemeasured bymonitoring the
value range of themodel’s activation functions. Here, the data should
possess an inter and intra-class variability of the targeted authentic
data scenario. We specify “targeted” here as different evaluation
and training goals of FR might occur, e.g. a model is evaluated specif-
ically for cases with an extreme pose or extreme age differences be-
tween the comparison pairs (intra-class variations), or for cases of
pairs of twins or siblings (inter-class variation). This goes for training
as well, as an FR model can be trained to specifically be tolerant to
mask occlusions, and thus the training data inter and intra-class di-
versity should represent that. The suitability of such data can bemea-
sured by comparing its genuine and imposter comparison scores
distributions with that of the targeted authentic data (which can be
much smaller in size) as performed in [16]. For specifically targeted
attribute variations, such as age and pose, attribute predictors can
be used to ensure the existence of such attribute variations in the
synthetic data to the same degree as the authentic data.

3. Multiple faces of an existing identity: Authentic face data with in-
sufficient intra-class variation is problematic for the training and
evaluation of FR. In terms of training an FR model, such data will
lead to models that are not trained to tolerate intra-class variation
(e.g. pose, expressions, age, illumination, etc.) and thus are expected
to lead to high F NMR in practical operations. When evaluating FR,
evaluation data in some practical cases such as an authority that pos-
sesses only a single (or few) images per identity (e.g. visa applicant
database) would not be sufficient to evaluate the expected F NMR
as no (or few) genuine pairs exist in the data. Both cases require ac-
quiring more samples of each of the existing identities. These sam-
ples have to be of realistic variation that matches the targeted
scenario. Such samples might be created synthetically and would
act as an augmentation approach when training an FR model, or as
additional samples to create genuine pairs when evaluating FR
models (or training FR in a triplet loss-like strategy). Such synthetic
data should interact with the FR model similarly to authentic data,
as previously discussed. It should also result in genuine comparison
score distribution that matches the targeted authentic data scenario.
One must take notice that this should be the case when the pairs are
between the existing authentic sample is compared to the synthetic
images of the same identity, but also, if needed, between the synthet-
ically generated samples of the same identity themselves.

4. A face of multiple identities: A synthetic face can also be used as an
attack, the fact that a face can be generated synthetically with prop-
erties that enables an attack on identity systems pursues researchers
to foresee such attacks. A face can be synthesized in a way that it
matches two more specific (known) identities to create what is re-
ferred to as a morphing attack. A morphing attack image is designed
to match with a number of specific identities and can be created on
the image level by interpolating the images of the targeted identities,
or generated synthetically to possess the identity information of the
targets [35]. Such an image, if used in association with a passport or
an identity document can enable multiple persons to be verified to
the alphanumeric information on the card. A wider attack that
4

surfaced lately in the literature is theMasteFace attack, where the at-
tack image is synthesized to match a wide range of the population
without the need to know the targeted identities [36]. As these at-
tacks might be used to attack visual inspection, automatic verifica-
tion, or both, they first have to have a natural appearance. This
natural appearance is best measured by user studies, where individ-
uals are asked if an image appears realistic or not. The vulnerability of
automatic FR to such attacks, and thus the measure of how good is
the synthetic data for its purpose, can be measured using the
Mated Morph Presentation Match Rate (MMPMR) [37]. The
MMPMR refers to the fraction of morphs whose similarity to both
identities used to morph, are below the selected FR comparison
score threshold relative to all morphs.

5. A face of specific authentic identity: Synthesizing a face of a specific
authentic identity is usually related to the need to synthesize this
face with also a specific expression or domain, unlike generating
such faces of an authentic identity where a realistic variation is
needed. This is commonly related to what is referred to as DeepFake
faces but also includes other face manipulation techniques such as
expression and attribute manipulations. As such attacks aim at ma-
nipulating human viewers, their success is bestmeasured by how re-
alistic they are to these viewers and how well they succeeded in the
targeted manipulation in the view of the viewers through user stud-
ies related to the exact goal of the manipulation. However, more
within the scope of this work is the ability of these attacks to fool au-
tomatic FR and attack detection algorithms. A comprehensive survey
on the issue of DeepFakes and facial imagemanipulation is presented
by Tolosana et al. in [38].

6. A face that excludes a specific pattern: A face synthesizing process
can maintain a subset of patterns from a specific face and excludes
other subsets of these patterns. Such patterns can be identity infor-
mation, age, gender, ethnicity, or even the patterns that make a
face detectable as a face, among other attribute patterns. Such a pro-
cess can be seen as an attack if it is aimed at avoiding a consented re-
quired process, such as automatic age verification to receive a service
or make an online purchase. However, such a process can also be
seen as a privacy enhancement mechanism. Excluding the identity,
while maintaining the image appearance and other attributes to
some degree is commonly referred to as image-level face de-
identification and it aims at avoiding the unconsented identification
of face images, whether in the public or private space. A subset of
this is to exclude the patterns of the face that makes it detectable
and thus avoid further processing. Removing other patterns like gen-
der or age falls within the image-level soft-biometric privacy en-
hancement techniques that aim at maintaining the identification
possibilities without allowing unconsented estimation of soft-
biometric attributes. Evaluating the ability to synthesize these face
images is based on evaluating the degree to which the patterns that
need to be excluded and the ones that need to be maintained are de-
tectable, where the first need to be as undetectable as possible and
the latter needs to be as detectable as possible. A comprehensive sur-
vey and discussion on these technologies are presented by Meden
et al. in [39].

4. Where are we now?

4.1. Face image generation

A deep generative model (DGM) is a deep neural network that is
trained to interpret andmodel a probability distribution of the authentic
training data. Specifically, a deep generativemodel takes randompoints
from e.g. Gaussian distribution and maps them through a neural net-
work such as the generated distribution closely matches the authentic
data distribution. The main DGM approaches that are proposed in the
literature are Variational Auto-Encoder (VAE) [47], Generative Adver-
sarial Network (GAN) [48], Autoregressivemodel [49], and Normalizing
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Flows [50] and Diffusion Models (DiffModel) [51], in addition to a large
number of hybrid models that combined two of previous approaches
such as GANwith VAE [52]. A comprehensive review of deep generative
modelings is presented by [53]. Each of these approaches presented
contributions towards providing a better trade-off between generated
sample quality i.e. producing samples of high perceived quality and fi-
delity that resemble the DGM training data, inference time i.e. enabling
fast sampling mechanism, architecture restrictions i.e. some of the
DGMs are limited to underlying network architecture and sample ap-
pearance variations.

4.2. How do the DGM approaches match the needed synthetic face data
properties?

• Single faces of random identities: DGM approaches such as StyleGAN
[54] presented very promising results in generating single faces of
random synthetic identities with high visual fidelity. However, the
generated faces could share the identity information, to a small
degree, with DGM’s original training (as reported in [55,16]).

• Multiple faces per random identities: Approaches such as Face-ID-
GAN [56], DiscoFaceGAN [57], GAN-Control [58], InterFaceGAN [59],
and CONFIG [52] proposed GAN models based on disentangled
representation learning to conditionally generate face images from
synthetic identities with predefined attributes e.g. age, pose, illumina-
tion, or expression. As generated images are explicitly controlled by a
predefined set of attributes, such imagesmight lake the intra-class di-
versity that exists in real-world face data and it is needed to train and
evaluate FR.

• Multiple faces of an existing identity: DGM approaches such as
CONFIG [52] are able to regenerate multiple faces of an existing iden-
tity by reconstructing input faces with a predefined set of attributes
such as changing expression, wearing sunglasses, adding makeup, or
changing hair color. However, such attribute manipulation ap-
proaches might induce some artifacts in reconstructed faces, which
might affect identity preservation between the input and the recon-
structed faces. Also, as such approaches are explicitly manipulating
the attributes of their input faces, the generated faces might not con-
tain large appearance variations, which are needed to train and
evaluate FRmodels.More importantly, identity preservation in recon-
structed samples is rarely evaluated and reported.

• A face of multiple identities: DGM approaches were not explicitly de-
signed and trained to generate a face of multiple identities. However,
recent works such as MorGAN [35], MIPGAN [60], and MorDIFF [61],
make use of generativemodels to generate a face ofmultiple identities
by interpolating two or more latent vectors of synthetic or real faces
and then generating a new face of multiple identities. In a similar
manner, however, with latent vector optimization rather than optimi-
zation, MasterFaces [36] are generated to match unknown identities.

• A face of specific authentic identity: DGM approaches that targeted
image-to-image modeling achieved impressive results in generating
a face of specific authentic identity. This has been commonly achieved
bymanipulating the input source face tomatch specific attributes or a
target domain while maintaining the identity information of the
source image. Although such approaches did not target generating
Deep-Fake attacks, they have been widely used in generating such
kinds of attacks [38].

• A face that excludes a specific pattern: None of the SOTA DGM ap-
proaches explicitly target generating a face that excludes a specific
pattern. A number of works make use of DGM approaches to ex-
clude a specific pattern e.g. identity, age, or gender of authentic
input faces, especially when such models include attribute disen-
tanglement. However, to the best of our knowledge, none of the
previous works present solutions to generate a face of synthetic
identity that excludes a specific pattern, rather this is done for
5

faces of authentic identities. An overview of the current state of
this issue can be found in [39].

4.3. What is the current state of the defined use-cases?

Very recently a fewworks build on existing DGM approaches to pro-
pose FR based on synthetic data. The following discussion presents the
use of synthetic data in FR grouped by the use-cases (discussed earlier
in this paper and presented in Fig. 1).

4.3.1. Training FR
Recently, synthetically generated face data has been proposed as an

alternative to privacy-sensitive authentic data to train FR models miti-
gating the technical, ethical, and legal concerns of using authentic bio-
metric data in training FR models. The currently proposed approaches
in the literature utilized synthetically generated data to train unsuper-
vised (UsynthFace [18]) or supervised FR models (SFace [16], SynFace
[17], DigiFace-1M [29] and IDnet [46]). Training the unsupervised FR
model as in UsynthFace requires that the training data maintain the
Property 1 (Section 2) i.e. single face of random identities, while super-
vised approaches, SFace, SynFace, IDnet, and DigiFace-1M, require that
the training data maintain the Property 2 i.e. multiple faces per random
identities (Section 2). Some of these approaches, SynFace and DigiFace-
1M, proposed combining authenticwith synthetic data during the train-
ing or transferring the knowledge from the pretrained FR model to im-
prove the recognition accuracies. Others (USynthFace) utilized only
synthetic data for FR training. Most synthetic FR approaches utilized
GAN-based (UsynthFace, SynFace) and/or geometric and color transfor-
mation data augmentation (UsynthFace, IDnet, and DigiFace-1M)
methods to create more challenging training samples improving the
model recognition accuracies. Table 2 summarizes the achieved accura-
cies on five FR benchmarks by recent FR models trained on synthetic
data. It can be observed from the reported results in Table 2 that includ-
ing data augmentation in FR model training significantly improved the
recognition accuracies. Also, the unsupervised FR model (UsynthFace
[18]) obtained very competitive results using unlabeled data to super-
vised synthetic-based FR models. Samples of synthetic data used in
the SOTA synthetic-based FRs are shown in Fig. 2.

4.3.2. Evaluating FR
A few works proposed the use of synthetic data for evaluating FR.

SynFace [17] presented a synthetic version of the Labeled Faces in the
Wild (LFW) dataset [40] and evaluated two FR models trained on au-
thentic and synthetic data, respectively on the synthetic version of the
LFW. The model trained on real data achieved an accuracy of 98.85%
and the one trained on synthetic data achieved an accuracy of 99.98%.
The work [17] also suggested that the degradation in the verification
performance between the two models is due to the domain gap be-
tween synthetic and real training images.

4.3.3. Attacking FR
DGM approaches have been widely and successfully utilized to gen-

eratemorphing,MasterFace, deep-fake, andmanipulation attacks on FR.
Researchers generally attempt to foresee such attacks and evaluate their
potential. Deep-fake and facemanipulation attacks are already a serious
problem facingmodern societies and their generation is becomingmore
available and realistic with time [38]. Morphing attacks based on syn-
thesized faces are a serious threat and FR recognition vulnerability to
them is getting close to that of image-level morphing [60]. MasterFace
attacks are relatively new, their initial proposed form is based on opti-
mization on a relatively weak FR model [36] with other works arguing
their feasibility [62]. However, on the other hand, synthetic data has
helped create privacy-friendly databases for the detection of such



Table 2
Verification accuracies (%) on five different FR benchmarks achieved by the supervised and unsupervised FR models trained on the synthetic training databases with the numbers of real
and synthetic training samples. The result in thefirst row is reportedusing the FRmodel trained on the authentic dataset to give an indication of the performance of an FRmodel trained on
the authentic CASIA-WebFace dataset [3]. To provide a fair comparison, all model results are obtained from the original publishedworks using the same network architecture (ResNet50)
trained on relatively same training dataset size. KT refers to knowledge transfer from the pretrained FRmodel. LFW [40], AgeDB-30 [41], CFP-FP [42], CA-LFW [43], CP-LFW [44] arewidely
used FR evaluation benchmarks.

Method Unsupervised Data augmentation # Synthetic Images # Authentic Images KT LFW AgeDB-30 CFP-FP CA-LFW CP-LFW

CosFace [45] × - 0 500 K × 99.55 94.55 95.31 93.78 89.95

SynFace [17] × GAN-based 500 K 0 × 91.93 61.63 75.03 74.73 70.43
DigiFace-1M [29] × - 500 K 0 × 88.07 60.92 70.99 69.23 66.73
DigiFace-1M [29] × Accessory + Geometric and color 500 K 0 × 95.40 76.97 87.40 78.62 78.87
SFace [16] × - 634 K 0 × 91.87 71.68 73.86 77.93 73.20
USynthFace [18] ✓ GAN-based + Geometric and color 400 K 0 × 92.23 71.62 78.56 77.05 72.03
IDnet [46] × - 528 K 0 × 84.83 63.58 70.43 71.50 67.35
IDnet [46] × Geometric and color 528 K 0 × 92.58 73.53 75.40 79.90 (3) 74.25

SynFace [17] × GAN-based 500 K 40 K × 97.23 81.32 87.68 85.08 80.32
DigiFace-1M [29] × Accessory + Geometric and color 500 K 40 K × 99.05 89.77 94.01 90.08 87.27
SFace [16] × - 634 K 0 ✓ 99.13 91.03 91.14 92.47 87.03
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attacks, specifically, the morphing attack [33,63] and face presentation
attack [64]. Huber et al. [63] organized a competition on face morphing
attack detection (MAD) based on privacy-aware synthetic training data
[33]. The competition aimed at promoting the use of synthetic data to
develop MAD solutions and attracted 12 solutions from both academia
and industry.

4.3.4. Privacy enhancement
Main advances in this respect are presented under one of two cate-

gories, de-identification or soft-biometric privacy. De-identification
can be achieved by adding adversarial noise to the image, image obfus-
cation, and image synthesis, the latter being the core focus of this work.
Many solutions have been proposed in the literature,with a recent over-
view of these solutions presented in [39]. The main challenge so far in
this domain is the cross-FR model performance as most works showed
very good performances on the FR models that were used to optimize
Fig. 2. Sample of synthetic data used in SynFace [17], UsynthFace [18], DigiFace-1M [29]
SFace [16] and IDnet [46]. It can be clearly noticed the high variations in SFace images in
comparison to other synthetic datasets. Although SynFace and UsynthFace utilized the
same DGM (DiscoFaceGAN), it can be also observed the appearance variations in
USynthFace using geometric and color transformations.
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the solution, however, this performance drops when using other un-
known FR models. Syntheses-based soft-biometric privacy followed a
similar trend as de-identification, however, with much less dominance
in the literature. In this aspect, many works rather focused on soft-
biometric privacy on the template level rather than the image. Image
and template level techniques are surveyed in [39]. An example of
image-based techniques is the FlowSAN [65] aimed at minimizing gen-
der information in the resulting images. Here, as the target is the soft-
biometrics and not the identity, the main challenge is to achieve gener-
alized performance across soft-biometric estimators while maintaining
FR performance across FR models.

5. Where can we do better?

Here, based on the discussed use-cases taxonomy, the synthetic data
requirements, and their current state alongwith the generation process,
we discuss the main issues where further improvement in future re-
search can have a strong effect on theuse of synthetic data in FR. The fol-
lowing discussionwill touch on the generation process, the defined use-
cases, as well as the general lack of well-defined suitability evaluation
protocols.

5.1. Face image generation

Generating realistic and high-quality samples along with enabling
high sampling speed and high-resolution scaling have derived the
main contributions of recent generative models proposed in the litera-
ture. In addition, some DGM approaches targeted specific applications
such as image in-painting, attribute manipulation, face aging, image
super-resolution, and image-to-image and text-to-image translations.
Such applications mainly require that the generated samples are of
high visual fidelity with less focus on the identity information, which
might be less optimal for biometric applications. When developing
DGM for FR use-cases, the solution should focus on the utility of the gen-
erated images for the given tasks rather than only focusing on the
human-perceived quality. The emergingworks on training FR solutions,
presented earlier, are considered the first step in this regard. This focus
on utility, rather than only the perceived quality, should be the main
drive in future research when synthesizing images for FR.

5.2. Training FR

Recent works that proposed the use of synthetic face data for FR uti-
lized deep neural network architectureswith hyper-parameters that are
optimized on authentic data. Such training paradigms might be sub-
optimal for learning face representations from synthetic data. Future re-
search works might target proposing network architectures or training
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paradigms designed specifically to learn from synthetic data. In general,
training FR solutions of synthetic data still fails behind those trained on
authentic data in terms of accuracy, which is the main practical short-
coming that hinders placing such solutions in practical use currently.
However, one must keep in mind that training FR on synthetic data is
a very recently emerging research direction and it is already achieving
higher recognition accuracies than solutions trained on synthetic data
less than a decade ago [19].

5.3. Evaluating FR

The need for large-scale FR evaluation datasets that represent real sce-
nario variations is the main motivation for future research directions on
synthetic data for FR evaluation. Although DGMs can generate arbitrary
realistic face images, the utility of the generated images for FR remains
challenging. Future research works include but are not limited to, DGMs
for generating multiple faces of existing authentic identities, which
might target specific variations such as age andpose, andgenerating com-
plete evaluation datasets of multiple images of multiple identities.

5.4. Attacking FR

Even though creating novel attacks on identity management sys-
tems and society in general sounds is a serious malicious action, it is es-
sential to foresee attacks created by real attackers to better enable their
detection. As the attackers would ask, the researchers should also ask
“What is the strongest attack I can create to serve the attack goals
given the current state of basic technology?” This follows the never-
ending game of cat and mouse between attacks and attack mitigation.
Therefore, the constant struggle here is to always try to foresee new at-
tacks and attack generation methodologies and analyze their strengths
and weaknesses, leading to better mitigation strategies.

5.5. Privacy enhancement

The main challenge to generative face privacy enhancement is the
generalizability and robustness as it must possess tomaintain operation
in real-world applications. This generalization must ensure that the de-
identification properties are strongly maintained even with unknown
FR solutions. The same goes for soft-biometric privacy, where the
privacy-enhanced images should maintain their privacy properties
when processed by diverse soft-biometric estimators with different
levels of knowledge [66]. Other open issues that still require increasing
attention are the lack of clear quantifiability and provability privacy en-
hancement, the limited public benchmarks, and the need for controlla-
ble privacy where the user can have a choice of the privatised
information [39].

5.6. Evaluation protocols

We provided in this work an initial discussion on what synthetic
data is needed for different FR use-cases and what properties are
needed from such data based on the way it is used. However, this initial
discussion should evolve into a much-needed set of evaluation metrics
and protocols that can precisely and comparably answer the question
of “How well does the created data fit its targeted properties within
its use-case?” Besides, and based on, the needed academic efforts in
this regard, given that the synthetic data is foreseen to be a commodity,
there is a need for such protocols andmetric standards on the industrial
level. A clear candidate to develop such a standard would be the ISO
SC37 work group 5 on Biometric testing and reporting.

6. Conclusion

The use of authentic data in FRposes technical, legal, and ethical con-
cerns. However, such data plays a major role in training, evaluating,
7

enhancing the FR user privacy, and even attacking FR. This work pro-
vided initial discussions on the use of synthetic data in FR as an alterna-
tive to authentic data.We started by analysing and defining taxonomies
for different possible FR use-cases in which synthetic data can be used.
Then, we discussed the needed properties of synthetic data under
each FR use-case. This has been followed by presenting the current
state of synthetic FR. Finally, we provided several interesting directions
of work that can be investigated in the future. As a concluding remark,
the use of synthetic data in different FR uses-cases is still in the early re-
search stage and this work provides a base discussion on this research
direction and aims at motivating and promoting further research
works toward responsible FR development.
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