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Abstract
The presence of decision-making algorithms in society is rapidly increasing nowadays, while concerns about their transpar-
ency and the possibility of these algorithms becoming new sources of discrimination are arising. There is a certain consensus 
about the need to develop AI applications with a Human-Centric approach. Human-Centric Machine Learning needs to be 
developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency 
and accountability; and (iv) fairness in AI-driven decision-making processes. All these four Human-Centric requirements are 
closely related to each other. With the aim of studying how current multimodal algorithms based on heterogeneous sources 
of information are affected by sensitive elements and inner biases in the data, we propose a fictitious case study focused on 
automated recruitment: FairCVtest. We train automatic recruitment algorithms using a set of multimodal synthetic profiles 
including image, text, and structured data, which are consciously scored with gender and racial biases. FairCVtest shows 
the capacity of the Artificial Intelligence (AI) behind automatic recruitment tools built this way (a common practice in 
many other application scenarios beyond recruitment) to extract sensitive information from unstructured data and exploit it 
in combination to data biases in undesirable (unfair) ways. We present an overview of recent works developing techniques 
capable of removing sensitive information and biases from the decision-making process of deep learning architectures, as well 
as commonly used databases for fairness research in AI. We demonstrate how learning approaches developed to guarantee 
privacy in latent spaces can lead to unbiased and fair automatic decision-making process. Our methodology and results show 
how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.

Keywords  Automated recruitment · Bias · Biometrics · Computer vision · Deep learning · FairCV · Fairness · Multimodal · 
Natural language processing

Introduction

Artificial Intelligence plays a key role in people’s lives 
nowadays, with automatic systems being deployed in a large 
variety of fields, such as healthcare, education, or jurispru-
dence. The data science community’s breakthroughs of the 

last decades along with the large amounts of data currently 
available have made possible such deployment, allowing us 
to train deep models that achieve a performance never seen 
before. The emergence of deep learning technologies has 
generated a paradigm shift, with handcrafted algorithms 
being replaced by data-driven approaches. However, the 
application of machine learning algorithms built using train-
ing data collected from society can lead to adverse effects, 
as these data may reflect current socio-cultural and histori-
cal biases [1]. In this scenario, automated decision-making 
models have the capacity to replicate human biases present 
in the data, or even amplify them [2–6] if appropriate meas-
ures are not taken.

There are relevant models based on machine learning 
that have been shown to make decisions largely influenced 
by demographic attributes in various fields. For example, 
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Google’s [7] and Facebook’s [8] ad delivery systems gener-
ated undesirable discrimination with disparate performance 
across population groups. In 2016, ProPublica research-
ers [9] analyzed several Broward County defendants’ crimi-
nal records 2 years after being assessed with the recidivism 
system COMPAS, finding that the algorithm was biased 
towards black defendants. New York’s insurance regulator 
probed UnitedHealth Group over its use of an algorithm 
that researchers found to be racially biased, the algorithm 
prioritized healthier white patients over sicker black ones 
[10]. Apple Credit service granted higher credit limits to 
men than women even though it was programmed to be blind 
to that variable [11]. Face analysis technologies have also 
shown a gap in performance between some demographic 
groups [2, 12–14] as a major consequence of an undiverse 
representation of society in the training data. Moreover, as 
Balakrishnan et al. pointed out [15], the problem of data bias 
goes beyond the training set, as we need a bias-free evalu-
ation set in order to correctly assess algorithmic fairness.

The usage of AI technologies is also growing in the labor 
market [16], where automatic decision-making systems are 
commonly used in different stages within the hiring pipe-
line [17]. However, automatic tools in this area have also 
exhibited worrying biased behaviors, such as Amazon’s 
recruiting tool preferring male candidates over female 
ones [18]. Ensuring that all social groups have equal oppor-
tunities in the labor market is crucial to overcome differ-
ences with minority groups, which have been historically 
penalized [19]. Some works are starting to address fairness 
in hiring [20–22], but the lack of transparency (i.e., both the 
models and their training data are usually private for legal 
or corporate reasons [20]) hinders the technical evaluation 
of these systems.

In response to the deployment of automatic systems, 
along with the concerns about their fairness, the govern-
ments are adopting regulations in this matter, placing special 
emphasis on personal data processing and preventing algo-
rithmic discrimination. Among these regulations, the Euro-
pean Union’s General Data Protection Regulation (GDPR)1 
is specially relevant for its impact on the use of machine 
learning algorithms [23]. The GDPR aims to protect EU 
citizens’ rights concerning data protection and privacy by 
regulating how to collect, store, and process personal data 
(e.g., Articles 17 and 44), and requires measures to pre-
vent discriminatory effects while processing sensitive data 
(according to Article 9, sensitive data includes “personal 
data revealing racial or ethnic origin, political opinions, reli-
gious or philosophical beliefs”). Thus, research on transpar-
ency, fairness, or explicability in machine learning is not 
only an ethical matter, but a legal concern and the basis for 

the development of responsible and helpful AI systems that 
can be trusted [24].

On the other hand, one of the most active areas in 
Machine Learning (ML) is around the development of new 
multimodal models capable of understanding and processing 
information from multiple heterogeneous sources of infor-
mation [25]. Among such sources of information we can 
include structured data (e.g., tabular data), and unstructured 
data from images, audio, and text. The implementation of 
these models in society must be accompanied by effective 
measures to prevent algorithms from becoming a source of 
discrimination. In this scenario, where multiple sources of 
both structured and unstructured data play a key role in algo-
rithms’ decisions, the task of detecting and preventing biases 
becomes even more relevant and difficult.

In this environment of desirable fair and trustworthy AI, 
the main contributions of this work are:

•	 We review the latest advances in Human-Centric ML 
research with special focus on the public available data-
bases proposed by the community.

•	 We present a new public experimental framework around 
automated recruitment, aimed to study how multimodal 
machine learning is influenced by demographic biases 
present in the training datasets: FairCVtest.2

•	 We have evaluated the capacity of both pre-trained mod-
els and data-driven technologies to extract demographic 
information and learn biased target functions from mul-
timodal sources of information, including images, texts, 
and structured data from resumes.

•	 We evaluated a discrimination-aware learning method 
based on the elimination of sensitive information such as 
gender or ethnicity from the learning process of multi-
modal approaches, and apply it to our automatic recruit-
ment testbed for improving fairness among demographic 
groups.

Our results demonstrate the high capacity of commonly 
used learning methods to expose sensitive information (e.g., 
gender and ethnicity) from different data domains, and the 
necessity to implement appropriate techniques to guarantee 
discrimination-free decision-making processes.

A preliminary version of this article was published 
in [26]. This article significantly improves [26] in the fol-
lowing aspects:

•	 We extend FairCVdb to incorporate a name and a short 
biography to each profile. To the best of our knowledge, 
this upgrade makes FairCVdb the first fairness research 
database including image, text and structured data.

1  https://​gdpr.​eu/. 2  https://​github.​com/​BiDAl​ab/​FairC​Vtest.

https://gdpr.eu/
https://github.com/BiDAlab/FairCVtest
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•	 We provide more extensive experiments within Fair-
CVtest, where we analyze the impact of data bias on an 
automatic recruitment tool under different scenarios. In 
these experiments, we use commonly used fairness crite-
ria to quantify this impact. We also measure the sensitive 
information exploited in the decision-making process, 
whereas [26] limited the experiments to a more qualita-
tive analysis. Furthermore, by including text data to our 
dataset, we extend FairCVtest with Natural Language 
Processing techniques.

•	 We provide a survey on fairness research in AI, in which 
we review some of the methods proposed in recent years 
to prevent algorithmic discrimination, and the most com-
monly used databases in the field.

The rest of the paper is structured as follows: “Human-Cen-
tric Research in Machine Learning” presents an overview 
on explainability in ML models, discrimination-aware ML 
approaches, and Human-Centric ML databases. “FairCVdb: 
Dataset for Multimodal Bias Research” describes the con-
sidered automatic hiring pipeline, examines the information 
available in a resume highlighting the sensitive data associ-
ated to it, and describes the dataset created in this work: 
FairCVdb. “General Learning Framework” presents the 
general framework for our work including problem formu-
lation. “Experiments and Results” reports the experiments 
in our testbed FairCVtest after describing the experimental 
methodology and the different scenarios evaluated. Finally, 
“Conclusions” summarizes the main conclusions.

Human‑Centric Research in Machine 
Learning

The recent advances in AI and the large amounts of data 
available have made possible the deployment of automatic 
decision-making algorithms in our society. Due to their great 
impact in people’s lives, especially in high stake settings, is 
essential that these systems are responsible and trustworthy. 
However, there are many models that have been shown to 
make decisions based on attributes considered as private 
(e.g., gender3 and ethnicity), or exhibiting systematically 
discrimination against individuals belonging to disadvan-
taged groups. We can find examples of such unfair treatment 
in various fields, such as healthcare [10, 29], ad delivery 

systems [7, 8, 30], hiring [16, 18], and both facial analy-
sis [5, 12, 13] and NLP technologies [31, 32].

In the following sections, we will present recent advances 
in Human-Centric ML research related with: (1) explainabil-
ity and interpretability of ML models; (2) discrimination-
aware ML approaches; and (3) databases for Human-Centric 
ML research.

Interpretable and Explainable ML

One of the long-term goals in deep learning is to learn 
abstract representations, which are generally invariant to 
local changes in the input [33]. It has been observed that 
many learned representations correspond to human-inter-
pretable concepts. But it is not quite clear what function 
they serve and whether it has a causal role that reveals how 
the network models its higher-level notions [34]. Research is 
showing that not all representations in the convolutional lay-
ers of a DNN correspond to natural parts, raising the possi-
bility of a different decomposition of the world than humans 
might expect, calling for further study into the exact nature 
of the learned representations [35, 36].

There is significant work on understanding neural net-
works. Most methods typically focus on what a network 
looks at when making a decision [37, 38]; other approaches 
seek to train explanatory models [39] or networks [40] that 
generate human-readable text.

We can distinguish between two types of approaches for 
generating a better understanding of an AI model: interpret-
able and explainable. As defined in [41], an interpretation is 
the mapping of an abstract concept (e.g., a predicted class) 
into a domain that the human can make sense of, e.g., images 
or text; and an explanation is the collection of features of 
the interpretable domain that have contributed for a given 
example to produce a decision.

On the interpretation side, we have Activation Maximiza-
tion, which consists of looking for an input pattern that pro-
duces a maximum response of the model. It was introduced 
in [42], but such visualization technique has a limitation: 
as complexity increases, it becomes more difficult to find 
a simple representation of a higher layer unit, because the 
optimization does not converge to a single global minimum. 
Simonyan et al. came up with the suggestion to perform the 
optimization with respect to the input image, obtaining an 
artificial image representative of the class of interest [43].

One way of improving activation maximization to enable 
enhanced visualizations of learned features is with the so-
called expert. That is, in the function to be maximized, the 
L2-norm regularizer (a term that penalizes inputs that are 
farther away from the origin) is replaced by a more sophis-
ticated one, called expert [35, 44, 45]. Another way is via 
deep generative models, incorporating such model in the 
activation maximization framework [46, 47].

3  We are aware of the studies that move away from the traditional 
view of gender as a binary variable [27], and the difference between 
gender identity and biological sex. Despite the limitations of such 
model [28], in this paper we use “gender” to refer to the external per-
ception of biological sex, in line with the work historically developed 
in gender classification into male and female individuals.
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On the explanation side, we have Sensitivity Analysis: 
how much do changes in each pixel affect the prediction. 
Initially intended for pruning neural networks and reduc-
ing the dimensionality of their input vector, was particularly 
useful for understanding the sensitivity of performance with 
respect to their structure, parameters, and input variables 
[48, 49]. More recently, it has been used for explaining the 
classification of images by deep neural networks. Simonyan 
et al. [43] applied partial derivatives to compute saliency 
maps. They show the sensitivity of each of the input image 
pixels, where the sensitivity of a pixel measures to what 
extent small changes in its value make the image to belong 
more or less to the class (local explanation).

Alternatives for explaining deep neural network pre-
dictions are backward propagation techniques. Some are: 
deconvolution, layer-wise relevance propagation (LRP) and 
guided backprop.

Zeiler and Fergus [50] proposed deconvolution to com-
pute a heatmap showing which input pattern originally 
caused a certain activation in the feature maps. The idea 
behind the deconvolution approach is to map the activations 
from the network back to pixel space using a backpropaga-
tion rule. The quantity being propagated can be filtered to 
retain only what passes through certain neurons or feature 
maps.

The LRP method [37] applies a propagation rule that dis-
tributes back (without gradients) the classification output 
f(x) decomposed into pixel relevance onto the input vari-
ables. This algorithm can be used to visualize the contribu-
tion of pixels both for and against a given class.

Guided backprop is the extension of the deconvolution 
approach for visualizing features learned by CNNs. Pro-
posed in [51], it combines backpropagation and deconvo-
lution by masking out the values for which at least one of 
the entries of the top gradient (deconvnet) or bottom data 
(backpropagation) is negative.

Another very well-known backpropagation-based method 
combining gradients, network weights, and activations is 
Grad-CAM [38]. Gradient-weighted Class Activation Map-
ping (Grad-CAM) uses the gradients of the class score with 
respect to the input image to produce a coarse localiza-
tion map highlighting the important regions in the image 
for predicting the concept. It can be combined with guided 
backpropagation for fine-grained visualizations of class-
discriminative features.

These methods selectively illustrate one of the multi-
ple patterns a filter represents, explanatory graphs provide 
a workaround. [52] proposed a method disentangling part 
patterns from each filter to represent the semantic hierarchy 
hidden inside a CNN.

Some other methods have gone beyond visualization of 
CNNs and diagnosed CNN representations to gain a deep 
understanding of the features encoded in a CNN. Others 

report the inconsistency of some widely deployed saliency 
methods, as they are not independent of both the data on 
which the model was trained and the model parameters [53].

Szegedy et al. [54] reported the existence of blind spots 
and counter-intuitive properties of neural networks. They 
found that it is possible to change the network’s prediction 
by applying an imperceptible optimized perturbation to the 
input image, which they called and adversarial example. 
Paving the way for a series of works that sought to produce 
images with which to fool the models [55–57].

Other studies aiming to understand deep neural networks 
are neuron ablation techniques. These seek a complete func-
tional understanding of the model, trying to elucidate its 
inner workings or shed light on its internal representations. 
Bau et al. found evidence for the emergence of disentangled, 
human-interpretable units (of objects, materials and colors) 
during training [34].

Discrimination‑Aware Learning

In order to prevent automated systems from making deci-
sions based on protected attributes or reproduce biased 
behaviors against disadvantaged groups, the research com-
munity has devised various ways to improve fairness in AI 
systems. These approaches are usually divided in the lit-
erature between pre-processing, in-processing, and post-
processing techniques [24].

The pre-processing techniques aim to transform the input 
domain to prevent discrimination and remove sensitive infor-
mation. The authors of [58] propose to remove sensitive 
information while improving model interpretability by learn-
ing a data-to-data transformation in the input domain, where 
the new representation achieves certain fairness criterion. 
This transformation is based in both neural style transfer 
and kernel Hilbert spaces. A similar approach is proposed 
in [59], which seeks to generate a new dataset similar to 
a given one, but fairer with respect to a certain protected 
attribute. For this purpose, a fairness criterion is added to the 
loss function of an auxiliary GAN [60]. In [61], the authors 
address the pre-processing transformation as an optimization 
problem which trades off discrimination and utility at proba-
bilistic level, while controlling sample distortion on an indi-
vidual level. More recently, Ramaswamy et al. proposed [62] 
a method for augmenting real datasets with GAN-generated 
synthetic images by modifying vectors in the GAN latent 
space to de-correlate sensitive and target attributes.

In-processing approaches focus on the learning process as 
the key point to prevent biased models, by changing the opti-
mization objective or imposing fairness constraints. In [63], 
the authors propose an adaptation of Domain Adaptation 
Neural Networks [64] to generate agnostic feature repre-
sentations, unbiased related to certain protected attribute. 
Also based in domain adaption, in [65], the authors reduce 
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racial biases in face recognition using mutual information 
and unsupervised domain adaptation, from a labeled domain 
(i.e., Caucasian individuals) to an unlabeled one (i.e., non 
Caucasian individuals). A method to mitigate bias in occu-
pation classification without having access to protected 
attributes is developed in [66], by reducing the correlation 
between the classifier’s output for each individual and the 
word embeddings of their names. Wang and Deng studied 
in [13] the use of an adaptive margin in large margin face 
recognition loss functions [67] to reduce the gap in perfor-
mance between different ethnicity groups. They proposed to 
use deep Q-learning to adaptively find the margin for each 
demographic group during training.

More recently, in-processing approaches based on adver-
sarial learning frameworks [68] have been explored. A joint 
learning and unlearning method is proposed in [69] to simul-
taneously learn the main classification task while unlearn-
ing biases by applying confusion loss, based on comput-
ing the cross entropy between the output of the best bias 
classifier and a uniform distribution. The authors of [70] 
introduced a new regularization loss based on mutual infor-
mation between feature embeddings and bias, training the 
networks using adversarial and gradient reversal [64] tech-
niques. In [71] an extension of triplet loss [72] is applied to 
remove sensitive information in feature embeddings, without 
losing performance in the main task.

Finally, post-processing methods assume that the output 
of the model may be biased, so they apply a transforma-
tion on it to improve fairness between demographic groups. 
Some works in this line have proposed to prevent unfairness 
using discrimination-aware data-mining [73, 74]. In [75], the 
authors propose a framework that enables a human manager 
to select how to make the trade-off among fairness and util-
ity. Then, the method selects a threshold for each demo-
graphic group to obtain an optimal classifier according to 
the manager’s preferences. Post-processing techniques are 
also common among studies on fairness in ranking [76–78], 
which are close to our work here.

Databases

The datasets used for learning or inference may be the most 
critical elements of the machine learning process where bias 
can appear. As these data are collected from society, they 
may reflect socio-cultural biases [1], or reflect an unbalanced 
representation of the different demographic groups compos-
ing it. A naive approach would be to remove all sensitive 
information from data, but this is almost infeasible in a gen-
eral AI setup (e.g., [31] demonstrates how removing explicit 
gender indicators from personal biographies is not enough 
to remove the gender bias from an occupation classifier, as 
other words may serve as “proxy”). On the other hand, col-
lecting large datasets that represent broad social diversity in 

a balanced manner can be extremely costly, and not enough 
to avoid disparate treatment between groups [13].

The biases introduced in the dataset used to train machine 
learning models typically reflect human biases present in 
society, or are related to an inaccurate representation of 
groups [89, 90]. In view of this situation, the scientific com-
munity has put lots of effort into collecting databases that 
improve the representation of different demographic groups, 
which can be used to suppress the presence of bias. In this 
section, we discuss some of the most commonly used data-
bases in AI fairness research, either because of the biases 
they present, or their absence (i.e., databases more balanced 
in terms of certain demographic attributes). Table 1 pro-
vides an overview of these databases, including the number 
of samples, data modality and the demographic attributes 
studied with each one. The Adult Income dataset [79] from 
the UCI repository is frequently used on gender and ethnic-
ity bias mitigation. The main task of the database is predict 
whether a person will earn more or less than $50K per year. 
The database includes 48,842 samples with 14 numerical/
categorical attributes each, such as education level, capital-
gain or occupation, and missing values.

The German Credit dataset [79] contains 1K entries 
with 20 different categorical/numerical attributes, where 
each entry represents a loan applicant by a bank. The appli-
cants are classified as good or bad risk credit, showing age 
bias toward young people. Also related to age biases, the 
Bank Marketing database [80] contains marketing cam-
paign data of a Portuguese bank institution. With more than 
41K samples, the goal is to predict if the client will sub-
scribe a term deposit, based on 20 categorical/numerical 
attributes including personal data and socioeconomic con-
textual information.

The ProPublica Recidivism dataset [9] provides more 
than 11K pretrial defendants records, assessed with the 
COMPAS algorithm to predict their likelihood of recidi-
vism. After a 2-year study, the researchers find out that the 
algorithm was biased towards African-Americans, showing 
both higher false positive and lower false-negative rates than 
white defendants.

In the study of demographic bias in NLP technologies,4 
we can cite the Common Crawl Bios dataset [31], which 
contains nearly 400K short biographies collected from 
Common Crawl. The goal of the dataset is to predict the 
occupation from these bios, out of 28 possible occupa-
tions showing high gender imbalances. The dataset also 
provides a “gender blinded” version of each bio, where 

4  There are several works that study demographic biases in word 
embeddings  [32, 91], working with representation spaces trained 
with large corpus of texts from Wikipedia, Common Crawl or Google 
News, among other sources.
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explicit gender indicators have been removed (e.g., pro-
nouns or names). On a closely related task, the WinoBias 
database [81] provides 3160 sentences, where the goal is 
to find all the expressions related to certain entity. Cen-
tered in people entities referred by their occupations, the 
dataset requires to link gender pronouns to male/female 
stereotypical occupations.

We now focus in face datasets, which are the basis for 
different face analysis task such as face recognition or gen-
der classification. The CelebA database [82] contains nearly 
202.6K images from more than 10K celebrities. Each image 
is annotated with 5 facial landmarks, along with 40 binary 
attributes including appearance features, demographic infor-
mation, or attractiveness, which shows a strong gender bias.

The IMDB-WIKI dataset [83] provides 460.7K images 
from the IMDB profiles of 20,284 different celebrities, 
along with 62.3K images from Wikipedia. Images were 
labeled using the information available in the profiles (i.e., 
name, gender, and birth date), extracting an age label by 
comparing the timestamp of the images and the birth date. 
The dataset presents a gender bias in the age distributions, 
as we encounter younger females and older males. Due to 
the image acquisition process, some labels are noisy, so the 

authors of [69] released the cleaned IMDB dataset, with 
60K cleaned images for age prediction and 80K for gender 
classification obtained from the IMDb split.

Also related with age studies, the MORPH database [84] 
provides 55K images from 13K individuals, aimed to study 
the effect of age-progression on different facial tasks. The 
database is longitudinal with age, having pictures of the 
same user over time. The database is strongly unbalanced 
with respect to gender and ethnicity, with 65% images 
belonging to African-American males.

Some databases aim to mitigate biases in face analysis 
technologies by putting emphasis in demographic balance 
and diversity. Pilot Parliaments Benchmark (PPB) [12] is 
a dataset of 1270 parliamentarians images from 6 different 
countries in Europe and Africa. The images are balanced 
with respect to gender and skin color, which are available as 
labels (the skin color is codified using the six-point Fitzpat-
rick system). The Labeled Ancestral Origin Faces in the 
Wild (LAOFIW) dataset [69] provides 14K images manu-
ally divided into 4 ancestral origin groups. The database is 
balanced with respect to ancestral origin and gender, and 
a variety of pose and illumination. Also emphasizing eth-
nicity balance, the FairFace database [85] contains more 

Table 1   Summary of the most common public databases for AI fairness and bias research

We specify the different modalities included in each dataset (i.e., images, texts, and categorical/numerical attributes), along with the demo-
graphic attributes typically studied with each one

Database #Samples Image Text Cat./
num.

Demographic Access

UCI Adult Income [79] 48.8K ✗ ✗ ✓ Ethnicity, gender archive.ics.uci.edu/ml/datasets/adult
German Credit [79] 1K ✗ ✗ ✓ Age archive.ics.uci.edu/ml/datasets/

statlog+(german+credit+data)
Bank Marketing [80] 41.1K ✗ ✗ ✓ Age archive.ics.uci.edu/ml/datasets/Bank+Marketing
ProPublica Recidivism [9] 11.8K ✗ ✗ ✓ Ethnicity github.com/propublica/compas-analysis
Common Crawl Bios [31] 397K ✗ ✓ ✗ Gender github.com/microsoft/biosbias
WinoBias [81] 3.2K ✗ ✓ ✗ Gender github.com/uclanlp/corefBias
CelebA [82] 202.6K ✓ ✗ ✓ Gender mmlab.ie.cuhk.edu.hk/projects/CelebA.html
IMDB-WIKI [83] 523K ✓ ✗ ✗ Age, gender data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
Cleaned IMDB [69] 140K ✓ ✗ ✗ Age, gender robots.ox.ac.uk/ vgg/data/laofiw/
MORPH [84] 55K ✓ ✗ ✗ Age, ethnicity, gender ebill.uncw.edu/C20231_ustores/web/product_detail.

jsp?PRODUCTID=8
PPB [12] 1.3K ✓ ✗ ✗ Ethnicity, gender gendershades.org/index.html
LAOFIW [69] 14K ✓ ✗ ✗ Ethnicity, gender robots.ox.ac.uk/ vgg/data/laofiw/
FairFace [85] 108.5K ✓ ✗ ✗ Age, ethnicity, gender github.com/joojs/fairface
Diversity in Faces [86] 1M ✓ ✗ ✗ Age, ethnicity, gender research.ibm.com/artificial-intelligence/trusted-ai/
DiveFace [71] 120K ✓ ✗ ✗ Ethnicity, gender github.com/BiDAlab/DiveFace
BFW [87] 20K ✓ ✗ ✗ Ethnicity, gender github.com/visionjo/facerec-bias-bfw
DemogPairs [88] 10.8K ✓ ✗ ✗ Gender, ethnicity download.hertasecurity.com/research/DemogPairs.zip
RFW [65] 40K ✓ ✗ ✗ Ethnicity whdeng.cn/RFW/testing.html
BUPT-B [13] 1.3M ✓ ✗ ✗ Ethnicity whdeng.cn/RFW/Trainingdataste.html
BUPT-G [13] 2M ✓ ✗ ✗ Ethnicity whdeng.cn/RFW/Trainingdataste.html
FairCVdb (Ours) 24K ✓ ✓ ✓ Ethnicity, gender github.com/BiDAlab/FairCVtest
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than 100K images equally distributed in 7 ethnicity groups 
(White, Black, Indian, East Asian, Southeast Asian, Mid-
dle East, and Latino), also providing gender and age labels. 
Aimed to study facial diversity, Diversity in Faces [86] pro-
vides 1 M images annotated with 10 different facial systems 
including gender, age, skin color, pose, and facial contrast 
labels, among others.

If we look at face recognition databases, DiveFace [71] 
contains face images equitably distributed among 6 demo-
graphic classes related to gender and 3 ethnic groups (Black, 
Asian, and Caucasian), including 24K different identities 
and a total of 120K images. The DemogPairs database [88] 
also proposes 6 balanced demographic groups related to 
gender and ethnicity, each one with 100 subjects and 1.8K 
images. On his part, the Balanced Faces in the Wild (BFW) 
database [87] presents 8 demographic groups related with 
gender and 4 ethnicity groups (Asian, Black, Indian and 
White), each one with 100 different users and 2.5K images. 
Finally, Wang and Deng proposed three different databases 
based on MS-Celeb-1 M [92], namely Racial Faces in the 
Wild (RFW) [65], BUPT-B [13] and BUPT-G [13]. While 
RFW is designed as a validation dataset, aimed to measure 
ethnicity biases, both BUPT-B and BUPT-G are proposed 
as ethnicity-aware training datasets. RFW defines 4 ethnic 
groups (Caucasian, Asian, Indian, and African), each one 
with 10K images and 3 different subjects. On the other hand, 
both BUPT-B and BUPT-G propose the same ethnic groups, 
the first one almost ethnicity-balanced with 1.3 M images 
and 28K subjects, while the latter contains 2 M images 
and 38K subjects, which are distributed approximating the 
world’s population distribution.

FairCVdb: Dataset for Multimodal Bias 
Research

AI in Hiring Processes

The usage of predictive tools in recruitment processes is 
increasing nowadays. Employers have adopted these tools 
in an attempt to reduce the time and cost of hiring, or to 
maximize the quality of the hiring process, among other 
reasons [16]. Rather than a single-point decision, the hir-
ing pipeline suppose a multi-stage process, which can be 
broadly divided in four stages [16]. In the sourcing stage, 
the employers attract potential candidates through adver-
tisements or job posting. Then, during screening, the 
employers assess the applicants to choose a subset to inter-
view individually. Finally, employers make a final decision 
(i.e., whether to hire or reject each applicant) in the selec-
tion stage. All of these stages can benefit from the use of 

automatic algorithms,5 as well as suffer from algorithmic 
discrimination if systems are not carefully designed. The 
labor market has a long history of unfair treatment of minor-
ity groups [19, 93], which makes bias prevention a crucial 
step in automatic hiring tools design. Although the study of 
fairness in algorithmic hiring has been limited [21], some 
works are starting to address this topic [20, 22, 94].

For the purpose of studying discrimination in Artificial 
Intelligence at large, and particularly in hiring processes, 
in this work, we propose a new experimental framework 
inspired in a fictitious automated recruiting system: Fair-
CVtest. Our work can be framed within the screening stage 
of the hiring pipeline, where an automatic tool determines a 
score from a set of applicants resumes. We chose this appli-
cation because it comprises personal information from dif-
ferent nature [95].

The resume is traditionally composed by structured data 
including name, position, age, gender, experience, or educa-
tion, among others (see Fig. 1), and also includes unstruc-
tured data such as a face photo or a short biography. A face 
image is rich in unstructured information such as identity, 
gender, ethnicity, or age [96, 97]. That information can be 
recognized in the image, but it requires a cognitive or auto-
matic process trained previously for that task. The text is 
also rich in unstructured information. The language and the 
way we use that language, determine attributes related to 
your nationality, age, or gender. Both, image and text, rep-
resent two of the domains that have attracted major inter-
est from the AI research community during last years. The 
Computer Vision and the Natural Language Processing com-
munities have boosted the algorithmic capabilities in image 
and text analysis through the usage of massive amounts of 
data, large computational capabilities (GPUs), and deep 
learning techniques.

The resumes used in the proposed FairCVtest framework 
include merits of the candidate (e.g., experience, education 
level, languages, etc.), two demographic attributes (gender 
and ethnicity), and a face photograph (see “FairCVdb: Data-
set Description” for all the details).

FairCVdb: Dataset Description

In this work, we present FairCVdb, a new dataset with 
24,000 synthetic resume profiles for both fairness and 
multimodal research in AI. Each profile includes 2 demo-
graphic attributes (gender and ethnicity), an occupation, a 
face image, a name, 7 attributes obtained from 5 information 
blocks that are usually found in a standard resume, and a 
short biography. The profiles comprise data from different 
nature including structured and unstructured data:

5  https://​www.​hirev​ue.​com/.

https://www.hirevue.com/
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•	 Demographic attributes (structured data): Each profile 
has been generated according to two gender classes and 
three ethnicity classes. These demographic attributes 
determine the face image (gender and ethnicity related), 
name (gender related), and pronouns in the short biogra-
phy (gender related).

•	 Face image (unstructured data-image): Each profile 
contains a real and unique face image assigned from 
the DiveFace database [71], which was introduced in 
“Databases”. DiveFace6 contains face images from 24K 
different identities with their corresponding gender and 
ethnicity attributes.

•	 Short Biography (unstructured data-text): We use the 
Common Crawl Bios dataset [31] to associate a short 
biography, a name, and an occupation (from a pool of 10 
different occupations) to each profile.

•	 Candidate competencies (structured data): The five infor-
mation blocks are: (1) education attainment, (2) availabil-
ity, (3) previous experience, (4) the existence of a recom-
mendation letter, and (5) language proficiency in a set of 
three different and common languages. Each language is 
encoded with an individual feature (3 features in total) 
that represents the level of knowledge in that language. 
We will refer to these resume features as candidate com-
petencies.

As we previously mentioned in “Databases”, the Common 
Crawl Bios dataset7 [31] contains online biographies col-
lected from Common Crawl relating 28 different occupa-
tions. Gender and occupation labels are available for each 
biography, as well as a “blinded” version of the bio, in which 
explicit gender indicators have been removed. For example, 
a biography labeled as [Attorney, Female] is presented as: 
Andrea Jepsen is an attorney with the School Law Center, 
a law firm focusing on the rights of students and families 
in education and school law disputes. She has worked with 
people with disabilities since 1997 in a variety of roles, 
including as an early childhood special education service 
coordinator, and as a legal services provider working regu-
larly in the courts and in administrative proceedings. Ms. 
Jepsen’s broad legal experience has involved representing 
clients in a variety of critical legal issues related to educa-
tion, housing, elder law matters, public benefits, family law 
disputes, probate and other concerns. Note that we under-
lined explicit gender indicators removed in the “blinded 
bio”, and that both name and occupation can be found in 
the first sentence of each biography, so this sentence was 
not included in the bios.

We select 24K biographies, and its corresponding blinded 
versions, from a subset of 10 different occupations. Each 
biography is associated according to gender to one FairCV 
profile, providing as well an occupation label and a name to 
the profiles, which we obtain by processing the first sentence 

Fig. 1   Information blocks in a resume and personal attributes that can be derived from each one. The number of crosses represent the level of 
sensitive information (+++ = high, ++ = medium, + = low)

6  https://​github.​com/​BiDAl​ab/​DiveF​ace. 7  https://​github.​com/​micro​soft/​biosb​ias.

https://github.com/BiDAlab/DiveFace
https://github.com/microsoft/biosbias
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of each bio. We group the occupations in four professional 
sectors: (1) audiovisual communication and journalism, with 
journalist, photographer, and filmmaker; (2) administration 
and jurisdiction, with attorney and accountant; (3) healthcare, 
with surgeon, nurse, and physician; and (4) education, with 
professor and teacher. Each professional sector has the same 
number of samples (i.e., 6K bios), and is gender-balanced. 
Furthermore, we define a suitability attribute (S),  represent-
ing the affinity degree of each sector with the potential job to 
which the resumes apply. The association of this attribute with 
each sector has purely academic purposes, without seeking to 
state the usefulness or importance of each of them.

The score Tj for a profile j is generated by linear combina-
tion of the candidate competencies xj = [x

j

1
,… , x

j

n] and the 
suitability attribute Sj as

where n = 7 is the number of features (competencies), �
i
 are 

the weighting factors for each competency xj
i
 (fixed manually 

based on consultation with a human recruitment expert), 
and � j is a small Gaussian noise to introduce a small degree 
of variability (i.e., two profiles with the same competen-
cies do not necessarily have to obtain the same result in all 
cases). Those scores Tj will serve as ground truth in our 
experiments.

Note that, by not taking into account gender or ethnicity 
information during the score generation in Eq. (1), these scores 
become agnostic to this information, and should be equally 
distributed among different demographic groups. Thus, we 
will refer to this target function as Unbiased scores TU, from 
which we define two target functions that include two types of 
bias: Gender bias TG and Ethnicity bias TE. Biased scores are 
generated by applying a penalty factor T� to certain individuals 
belonging to a particular demographic group. For the Gen-
der-biased scores TG, we apply a penalty factor on the female 
group, while in the Ethnicity-biased scores TE , we apply the 
penalty factor to one ethnic group, and the inverse to another 
one (i.e., the individuals belonging to this group are overrated 
in TE, showing a higher score than in TU ). This leads to a set 
of scores where, with the same competencies, certain groups 
have lower scores than others, simulating the case where the 
process is influenced by certain cognitive biases introduced by 
humans, protocols, or automatic systems.

Table 2 summarizes the features that make up each profile, 
as well as their labels. We divided the FairCVdb in two splits, 
with 80% of the synthetic profiles (19,200 CVs) as training 
set, and the remaining 20% (4800 CVs) as validation set. Both 
sets are almost perfectly balanced among gender, ethnicity and 
professional sector. Figure 2 presents four visual examples of 
the resumes generated with FairCVdb.

(1)T
j = � j +

n∑

i=1

�
i
x
j

i
+ �

s
S
j

FairCVtest: Description

General Learning Framework

The multimodal model represented by its parameters vector 
w

F (F for fused model [95]) is trained using features learned 
by M independent models {w1,… ,wM} where each model 
produces n

i
 features xi = [xi

1
,… , xi

n
i

] ∈ ℝ
n
i . Without loss of 

generality, the Fig. 3 presents the learning framework for 
M = 3. The learning process is guided by a Target function 
T,  and a learning strategy that minimizes the error between 
the output O and the Target function T. In our framework, 
where xi is data obtained from the resume, wi are models 
trained specifically for different information domains (e.g., 
images, text) and T is a score within the interval [0, 1] rank-
ing the candidates according to their merits. A score close 
to 0 corresponds to the worst candidate, while the best can-
didate would get 1. The learning strategy is traditionally 
based on the minimization of a loss function defined to 
obtain the best performance. The most popular approach for 
supervised learning is to train the model w by minimizing a 
loss function L over a set of training samples S:

(2)min
w

F

∑

x
j∈S

L(O(xj ∣ wF), Tj).

Table 2   Overview of the different attributes available in each FairCV 
profile

We include the possible values of each attribute, as well as its nature 
as Input and/or Target

Name Type Data values

Education I x1 ∈ {0.2, 0.4, 0.6, 0.8, 1}

Recommendation I x2 ∈ {0, 1}

Availability I x3 ∈ {0.2, 0.4, 0.6, 0.8, 1}

Previous experience I x4 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}

Language proficiency I xi ∈ {0, 0.2, 0.4, 0.6, 0.8, 1},
i ∈ {5, 6, 7}

Face image I I [m, n]∕m, n ∈ [0, 119]

Face embedding I f ∈ ℝ
20∕‖f‖ = 1

Agnostic face embedding I f
a
∈ ℝ

20∕‖f
a
‖ = 1

Name I Text data
Biography I Text data
Agnostic biography I Text data
Gender I/T G ∈ {0, 1}

Ethnicity I/T E ∈ {0, 1, 2}

Occupation I/T O ∶ ℕ ∈ [0, 11]

Suitability I/T S ∈ {0.25, 0.5, 0.75, 1}

Blind score T T
U ∶ ℝ ∈ [0, 1]

Gender-biased score T T
G ∶ ℝ ∈ [0, 1]

Ethnicity-biased score T T
E ∶ ℝ ∈ [0, 1]
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Fig. 2   Visual examples of the FairCVdb synthetic resumes, including a face image, a name, an occupation, a short biography and the candidate 
competencies

Fig. 3   Block diagram of the automatic multimodal learning process and 6 (A to E) stages where bias can appear
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Biases can be introduced in different stages of the learning 
process (see Fig. 3): in the Data used to train the models (A), 
the Preprocessing or Feature generation (B), the Target func-
tion (C), and the Learning strategy (D). As a result of the 
biases introduced at of these points (A to D), we may obtain 
biased Results (R). In this work, we focus on the Target func-
tion (C) and the Learning strategy (D). The Target function 
is critical as it could introduce cognitive biases from biased 
processes.

FairCVtest: Multimodal Learning Architecture 
for Automatic CV Analysis

Figure 4 summarizes the learning architecture proposed to 
study the different scenarios of FairCVtest. We designed the 
candidate score predictor as a multimodal neural network 
with three input branches: (i) face image, (ii) text biography, 
and (iii) candidate competencies. The learning architecture 
includes two specific models to process the face image and 
text data from the biography, before fusing the information 
from all three modalities.

Face Analysis Model

We use the face image from each profile, and the pre-trained 
model ResNet-50 [98] as feature extractor to obtain feature 
embeddings from the applicants’ face attributes. ResNet-50 
is a popular Convolutional Neural Network composed with 
50 layers including residual or “shortcuts” connections to 
improve accuracy as the net depth increases (i.e., solving 
the “vanishing gradient” problem). ResNet-50’s last convo-
lutional layer outputs embeddings with 2048 features, so we 
added a fully connected layer to perform a bottleneck that 

compresses these embeddings to just 20 features (maintain-
ing the competitive face recognition performance), so that 
its size approximates to that of the candidates competen-
cies. Note that our face model was trained exclusively for 
the task of face recognition. However, although gender or 
ethnicity information were not intentionally employed dur-
ing the training process, this information is part of the face 
attributes. Therefore, an AI system trained on these face 
embeddings could detect the protected attributes without 
being explicitly trained for this task.

Text Analysis Model

The second branch is aimed to extract a text representation 
from the bios, using a bidirectional LSTM layer composed 
by 32 units and hyperbolic tangent activation. This branch 
receives as input a sequence of word vectors. We use the 
fastText8 word embeddings [99] to represent each word in 
the biographies as 300-dimensional word vectors. Note that 
these word vectors were trained on a different Common 
Crawl subset than the one used to extract the biographies 
of [31].

Multimodal Model

The face and text features obtained from its respective 
models are combined with the candidate competencies to 
feed the multimodal network. This network is composed by 
two hidden layers, with 40 and 20 neurons respectively and 
ReLU activation, and only one neuron with sigmoid activa-
tion in the output layer. Note that, as the target functions T 

Fig. 4   Multimodal learning architecture, composed by a Convo-
lutional Neural Network (ResNet-50  [98]), a BLSTM and a fully 
connected network used to fuse the features from different domains 

(image, text and structured data). Note that, in the agnostic scenario, 
we include a sensitive information removal module  [71] over the 
ResNet network to generate agnostic face embeddings

8  https://​fastt​ext.​cc/​docs/​en/​engli​sh-​vecto​rs.​html.

https://fasttext.cc/docs/en/english-vectors.html
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in FairCVdb are real valued scores within the interval [0, 
1], we treat this task as a regression problem. A binary clas-
sifier can be obtained by thresholding the predicted scores 
(i.e., switching from a scoring tool to a selection tool), as 
we will show in “Fairness in Recruitment Tools: Learning 
Demographic Parity”.

Privacy‑Enhancing Representation Learning

With the aim of generating another representation, agnos-
tic with regard to gender and ethnicity, we use the method 
proposed in [71], called SensitiveNets. This method was 
proposed to improve the privacy in face biometrics, by 
incorporating an adversarial regularizer capable of removing 
sensitive information from pre-trained feature embeddings 
without losing performance in the main task. Thus, two dif-
ferent face representations are available for each profile, one 
containing gender and ethnicity sensitive information, and a 
second one “blind” or agnostic to these attributes. In order to 
remove sensitive information from the learned space, Eq. 2 
is replaced by

where Δ is an adversarial regularizer introduced to measure 
the amount of sensitive information available in the learned 
space represented by wj:

The probability P is the output of a classifier trained to 
detect the sensitive attribute in the learned space (e.g., Gen-
der in this example). In other words, P is the probability of 
observing Male features in the learned space after the sensi-
tive information suppression (see [71] for details).

Scenarios and Protocols

In order to evaluate how and to what extent an algorithm is 
influenced by biases that are present in the FairCVdb target 
function, we use the FairCVdb dataset previously introduced 
in “FairCVdb: Dataset for Multimodal Bias Research” to 
train a recruitment system under three different scenarios. 
The proposed testbed (FairCVtest) consist of FairCVdb, the 
trained recruitment systems, and the related experimental 
protocols.

We present three different versions of the recruitment sys-
tem, with slight differences in the input data and the target 
function aimed at studying gender/ethnicity biases in multi-
modal learning. The three scenarios included in FairCVtest 
were all trained using the candidate competencies, a face 

(3)min
w

F

∑

x
j∈S

L(O(xj ∣ wF), Tj) + Δ

(4)Δ = log{1+ ∣ 0.9 − P(Male ∣ xj) ∣}.

representation, and a short bio, with the following particular 
configurations:

•	 Neutral: Training with Unbiased scores TU, the original 
face representation extracted with ResNet-50 [98], and 
the biography with explicit gender indicators.

•	 Biased: Training with Biased scores T (G∕E), the original 
face representation, and the biography with explicit gen-
der indicators.

•	 Agnostic: Training with Biased scores T (G∕E), the gender 
and ethnicity agnostic representation learned with [71], 
and the “blind” biography.

The experiments performed in next section will try to evalu-
ate the capacity of the recruitment AI in each scenario to 
detect protected attributes (e.g., gender, ethnicity) without 
being explicitly trained for this task.

Experiments and Results

In this section we will train and evaluate different recruit-
ment models, aimed to predict a score from the candidate 
resumes. Each recruitment tool follows the configuration 
of one of the scenarios exposed in “Scenarios and Proto-
cols”, and was trained for 16 epochs using Adam optimizer 
( � = 0.001, �1 = 0.9 and �2 = 0.999), batch size of 128, and 
mean absolute error as loss metric.

In Fig. 5 we can observe the distribution of the scores 
predicted from our validation set, by gender or ethnicity, 
in both Neutral and Biased scenarios. As a measure of 
the bias’ impact in the classifier, we compute the Kull-
back–Leibler divergence KL(P ‖Q ) between demographic 
distributions. In the gender case, we define P as the male 
score distribution and Q as the female’s one, while in the 
ethnicity setup we make 1-1 comparisons (i.e., G1 vs G2,  
G1 vs G3 and G2 vs G3) and report the average diver-
gence. In the Neutral Scenario (see top row in Fig. 5), 
there is no difference between demographic groups, as can 
be corroborated with the KL divergence tending to zero in 
both cases (KL = 0.019 in the gender case, KL = 0.023 in 
the ethnicity one). As expected, using the unbiased scores 
T
U as target function and a balanced training set leads 

us to an unbiased classifier, even in the presence of data 
containing demographic information (as we will see in 
“Privacy in Recruitment Tools: Removing Sensitive Infor-
mation”). On the other hand, the demographic difference 
is clearly visible in the Biased scenarios. This difference 
is most notorious in the gender case (see bottom-left plot 
in Fig. 5), with the KL divergence rising to 0.320, com-
pared to its low value in the Neutral setup. Attending to the 
Ethnicity-biased Scenario, the average KL divergence rises 
to 0.178. However, the difference between groups 1 and 3 
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is close to that seen between male–female classes, with a 
KL divergence around 0.317. Note that gender or ethnic-
ity are not inputs of our model, but rather the system is 
able to detect this sensitive information from some of the 
input features (i.e., the face embedding, the biography, or 
the competencies). Therefore, despite not having explicit 
access to demographic attributes, the classifier is able to 
detect this information and find its correlation with the 
biases introduced in the scores, and so it ends up repro-
ducing them.

The third scenario provided by FairCVtest, which we 
call Agnostic Scenario, aims to prevent the system to inherit 
data biases. As we introduced in “Scenarios and Protocols”, 
the Agnostic Scenario uses a gender blind version of the 
biographies, as well as a face embedding where sensitive 
information has been removed using the method of [71]. 
Figure 6 presents the hiring score distributions in this setup. 
As we can see, the gender distributions are close to the ones 
observed in the Neutral Scenario (see top-left plot in Fig. 5), 

despite using gender-biased labels during training. In the 
ethnicity case, we can observe a slight difference between 
groups, much smoother than the one we saw in the Biased 
Scenario (see bottom-left plot in Fig. 5), as can be confirmed 
with the KL divergence (i.e., 0.061, compared to the biased 
case where this value is around 0.178). However, this gap 
on the scores between demographic groups still has margin 
to decrease to a level similar to that of the Neutral Scenario. 
The difference observed in the behavior of gender and eth-
nicity agnostic cases can be explained by the fact that we 
removed almost all gender information from the input (i.e., 
face embedding and biography), but for the ethnicity we only 
took measures on the face embedding, not on the competen-
cies. Thus, competencies are acting as a soft proxy for the 
ethnicity group.

Note that our agnostic approximation does not seek to make 
the system capable of detecting whether a score is unfair, 
nor to compensate such bias, but rather blind it to sensitive 
attributes with the aim of preventing the model to establish a 

Fig. 5   Hiring score distributions by gender (left) and ethnicity (right). The top row presents hiring score distributions in the Neutral Scenario, 
while the bottom presents them in the Gender- and Ethnicity-biased Scenarios



	 SN Computer Science           (2023) 4:434   434   Page 14 of 20

SN Computer Science

correlation between the demographic groups and score biases. 
This fact can be corroborated with the training loss, which 
has a higher value in the Agnostic Scenario (0.035 for gen-
der, 0.044 for ethnicity) than in the Biased Scenario (0.49 for 
gender, 0.64 for ethnicity). By removing sensitive information 
from the input, the model is not able to learn what motivates 
the difference in the scores between individuals with similar 
competencies, as it is blind to the demographic group, and 
therefore its output does not approximate correctly the biased 
target function after training.

Fairness in Recruitment Tools: Learning 
Demographic Parity

Now that we have analyzed the effect of data biases in the 
score distributions, in this section we evaluate their impact in 
the final decision of a screening process. A screening tool is 
used to assess a set of individuals according to certain criteria 
to select a subset of the “best” ones. The outcome of such 
process could be a list of selected candidates (e.g., applicants 
selected for an individual interview) or a top-k ranking that 
measures the relative quality of the k best individuals from the 
set. We propose an experiment to simulate a screening process 
with FairCtest, using the recruitment tools that we trained in 
the previous section. For each scenario, we predict the scores 
from a pool including the 4800 resumes of our validation set, 
and select the top-1000 candidates (i.e., the candidates with the 
highest scores) among them. By selecting the 1000 candidates 
with the highest scores, we establish a thresholding rule to 
classify the candidates in two categories, therefore switching 
from a regression task to a binary classification task.

We will measure fairness in each scenario using the demo-
graphic parity criterion. This criterion requires a classifier’s 
decision to be statistically independent of a protected attrib-
ute (i.e., gender or ethnicity in our experiments). As we’re 

working with balanced groups, the criterion implies that all 
demographic groups should have the same rate of appearance 
in the top. We can measure demographic parity between two 
groups through the p% score as

where ŷ is a trained classifier’s prediction, and z is a binary 
protected attribute. The p% score calculates how far off 
the equality the model’s decisions are. According to the 
U.S. Equal Employment Opportunity Commission “ 4∕5 
rule” [100], the positive rate of a protected group should 
not be less than 4∕5 of that of the group with the higher posi-
tive rate. Otherwise, the protected group could be suffering 
disparate impact. Hence, we will set this rate as an indicator 
that a model is biased.

Table 3 presents the top-1000 candidates in each scenario, 
by gender and ethnicity group. In the ethnicity case, we com-
pute three p% scores per model by doing 1-1 comparisons 
with the three ethnic groups. As we can observe, in the Neu-
tral Scenario the classifier shows no demographic bias, with 
both gender and ethnicity groups having a balanced repre-
sentation in the ranking. This can be corroborated with the 
p% score, which reach values higher than 90% in all cases. 
In the Biased scenario the groups Male and Ethnic Group 1 
are significantly favored and the difference between groups 
is now clearly visible. In the gender case, almost 70% of 
the individuals in the top belong to the Male group, which 
reduces the p% score nearly to 40%. On the other hand, the 
first ethnic group represents almost half of the top, with the 
third one exhibiting a 21.6%. For both G2 and G3 the p% 
score points out unfair treatment (i.e., a value under 80%) 
with respect to G1 (see p1% and p2% in Table 3). Finally, 
in the Agnostic Scenario, the demographic differences were 

(5)p% = min

(
P(ŷ = 1 ∣ z = 0)

P(ŷ = 1 ∣ z = 1)
,
P(ŷ = 1 ∣ z = 1)

P(ŷ = 1 ∣ z = 0)

)

Fig. 6   Hiring score distributions by gender (left) and ethnicity (right), in the Agnostic Scenario
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significantly reduced with respect to the Biased one, with 
male and female rates showing even more balance than in 
the Neutral Scenario. The reduction of the gap among eth-
nic rates is enough to overcome the limit in the p% score, 
but still leaves room for improvement with a difference of 
nearly 6% between G1 and G3. This is not surprising, as we 
already observed in Fig. 6 an slight difference between the 
score distribution of each ethnicity group.

Privacy in Recruitment Tools: Removing Sensitive 
Information

We have observed in the previous sections the impact of 
demographic biases in both the score distribution and the 
selection rates in different scenarios. In these experiments, 
the difference between groups was a consequence of the 
biases introduced in the target function. However, as can be 
seen in the Agnostic Scenario, by removing gender and eth-
nicity information from the input we can prevent the model 
to reproduce those biases, as it cannot see which factor deter-
mines the score penalty for some individuals.

Since the key of our Agnostic Scenario is the removal 
of sensitive information, in this section we will analyze 
the demographic information extracted by the hiring tool 
in each scenario. To this aim, we use multimodal feature 
embeddings extracted by the recruitment tool to train 
and evaluate the performance of both gender and ethnic-
ity classifiers. We obtain these embeddings as the output 
of the first dense layer of our learning architecture (see 
“Scenarios and Protocols”), in which the information from 
different data domains has already been fused. For each 
scenario, we train 3 different classification algorithms, 

namely Support Vector Machines (SVM), Random Forests 
(RF), and Neural Networks (NN).

Table 4 presents the accuracies obtained by each clas-
sification algorithm in the three scenarios of FairCVtest. 
The results show a different behavior between scenarios 
and demographic traits. As expected, the setup in which 
most sensitive information can be extracted (gender and 
ethnicity in this work) is the Biased one for both attributes. 
The SVM classifier obtains the higher validation accura-
cies, with almost 90% in the gender case and 76.40% in the 
ethnicity one. Note that none of these values reach state-
of-art performances (i.e., neither the ResNet-50 model 
nor the hiring tools were not explicitly trained to classify 
those attributes), but both of them warn of large amounts 
of sensitive information within the embeddings. On the 
other hand, both Neutral and Agnostic scenarios show 
lower accuracies than the Biased configuration. However, 
we can see a gap in performance between them, with all 
the classifiers showing higher accuracy in the Neutral Sce-
nario. This fact demonstrates that, despite training with 
the Unbiased scores TU which have no relationship with 
any demographic group membership, the embeddings 
extracted in the Neutral Scenario contain some sensitive 
information. Using the gender blinded bios and the face 
embeddings in which demographic information has been 
removed, we reduced the amount of latent sensitive infor-
mation within the agnostic embeddings. This reduction 
leads us to almost random-choice accuracies in the gender 
case (i.e., in a binary task, the random-choice classifier’s 
accuracy is 50%), but in the ethnicity one the classifiers 
fall far from this limit (i.e., 33% corresponding to 3 ethnic 
groups), since there is still some information related to that 
sensitive attribute in the candidate competencies.

Table 3   Distribution of the 
top 1000 candidates in each 
Scenario of FairCVtest, by 
gender and ethnicity group

We include the p% score (see Eq. 5) as a measure of the difference between groups. In the ethnicity case, 
p1% for G1 vs G2, p2% for G1 vs G3 and p3% for G2 vs G3

Scenario Gender p% Ethnicity p1% p2% p3%

Male (%) Female (%) Group 1 (%) Group 2 (%) Group 3 (%)

Neutral 51.90 48.10 92.68 34.20 35.00 30.80 97.71 90.06 88.00
Biased 72.90 27.10 37.17 50.80 30.40 18.80 59.84 37.01 61.84
Agnostic 52.80 47.20 89.39 36.70 32.70 30.60 89.10 83.38 93.58

Table 4   Accuracy of different classification algorithms, trained with feature embeddings extracted by the recruitment tool in each scenario 
(SVM = Support Vector Machines, RF = Random Forests, NN = Neural Networks)

Scenario Gender classification Ethnicity classification

SVM (%) RF (%) NN (%) SVM (%) RF (%) NN (%)

Neutral 65.04 62.25 63.92 54.13 51.94 50.29
Biased 89.50 88.46 86.37 76.40 75.88 74.31
Agnostic 54.13 51.94 52.94 48.85 48.13 49.71
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Conclusions

The development of Human-Centric Artificial Intelligence 
applications will be critical to ensure the correct deploy-
ment of AI technologies in our society. In this paper, we have 
revised the recent advances in this field, with particular atten-
tion to available databases proposed by the research commu-
nity. We have also presented FairCVtest, a new experimen-
tal framework (publicly available9) on AI-based automated 
recruitment to study how multimodal machine learning is 
affected by biases present in the training data. Using Fair-
CVtest, we have studied the capacity of common deep learn-
ing algorithms to expose and exploit sensitive information 
from commonly used structured and unstructured data.

The contributed experimental framework includes Fair-
CVdb, a large set of 24,000 synthetic profiles with informa-
tion typically found in job applicants’ resumes from different 
data domains (e.g., face images, text data and structured 
data). These profiles were scored introducing gender and 
ethnicity biases, which resulted in gender and ethnicity dis-
crimination in the learned models targeted to generate can-
didate scores for hiring purposes. In this scenario, the sys-
tem was able to extract demographic information from the 
input data, and learn its relation with the biases introduced 
in the scores. This behavior is not limited to the case studied, 
where the bias lies in the target function. Feature selection or 
unbalanced data can also become sources of biases. This last 
case is common when datasets are collected from historical 
sources that fail to represent the diversity of our society.

We discussed recent methods to prevent undesired effects 
of algorithmic biases, as well as the most widely used data-
bases in the bias and fairness research in AI. We then experi-
mented with one of these methods, known as SensitiveNets, 
to improve fairness in this AI-based recruitment framework. 
Our agnostic setup removes sensitive information from text 
data at the input level, and apply SensitiveNets to remove it 
from the face images during the learning process. After the 
demographic “blinding” process, the recruitment system did 
not show discriminatory treatment even in the presence of 
biases in training data, thus improving equity among differ-
ent demographic groups.

The most common approach to analyze algorithmic dis-
crimination is through group-based bias [14]. However, 
recent works are now starting to investigate biased effects 
in AI with user-specific methods, e.g., [75, 101]. We plan 
to update FairCVtest with such user-specific biases in 
addition to the considered group-based bias. Other future 
work includes extending our testbed to other multimodal 
setups like smartphone-based interaction with application 
to authentication [102], behavior understanding [103], and 

remote monitoring/assessment [104]. Finally, we also fore-
see worthy research in the extension of the presented bias-
assessment [105] and bias-reduction methods [71] based on 
recent advances in biometric template protection [106] and 
distributed privacy preservation [107].
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