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Abstract—Nowadays, facial recognition systems are still vul-
nerable to adversarial attacks. These attacks vary from simple
perturbations of the input image to modifying the parame-
ters of the recognition model to impersonate an authorised
subject. So-called privacy-enhancing facial recognition systems
have been mostly developed to provide protection of stored
biometric reference data, i.e. templates. In the literature, privacy-
enhancing facial recognition approaches have focused solely on
conventional security threats at the template level, ignoring the
growing concern related to adversarial attacks. Up to now, few
works have provided mechanisms to protect face recognition
against adversarial attacks while maintaining high security at the
template level. In this paper, we propose different key selection
strategies to improve the security of a competitive cancelable
scheme operating at the signal level. Experimental results show
that certain strategies based on signal-level key selection can
lead to complete blocking of the adversarial attack based on an
iterative optimization for the most secure threshold, while for
the most practical threshold, the attack success chance can be
decreased to approximately 5.0%.

Index Terms—adversarial attack, iterative optimization, face
recognition, privacy protection, security, cancelable biometrics

I. INTRODUCTION

Face recognition systems have been deployed in numerous
access control applications, e.g. border control [1], financial
transactions and ID cards [2]. However, the widespread use
of these technologies has raised serious security and privacy
concerns. Additionally, with the recent success of deep learn-
ing in facial recognition, potential adversarial attacks have
been reported (e.g. [3], [4]). These attacks range from simple
perturbation of the input image to advanced attacks in which
model parameters are modified. [5]. According to Xu et al.
[5], adversarial images lead to higher false match rates when
security thresholds are set in a biometric system using a
clean dataset (e.g. original face image without adversarial
perturbation). In addition, when unauthorised subjects are
allowed access to a restricted service or resource, they can
launch adversarial attacks against the system and gain access
to different applications [6], e.g. a genuine client’s account [7].

Cancelable biometrics utilise transformations in signal or
feature domain which enable a biometric comparison in the
transformed (encrypted) domain [8], i.e. biometric templates
are permanently protected. In the context of cancelable bio-
metrics, Ghafourian et al. [9] proposed a scheme that aims
at protecting face templates against iterative optimization-
based adversarial attacks without scarifying template protec-
tion requirements [10] such as unlinkability, irreversibility,
renewability, and biometric performance. More precisely, the
so-called OTB-morph method utilises the concept of morphing
attacks [11] as a transformation function for cancelable face
biometrics based on time-varying keys (signal- or image-
based level). The randomness employed in this transformation
function (henceforth referred to as “key”) is based on the
random selection of the sample that contributes to a morph.
Despite the fact that the method reduces the success chance
of adversarial attacks produced by iterative optimization, it is
still unknown to what extent the key selection (i.e. random
selection in [9]) in OTB-morph could lead to higher security
against such attacks.

Motivated by the above facts, this work investigates and
proposes different key selection strategies for the OTB-morph
algorithm [9]. In particular, we analyse how the probability of
accepting the attacks produced by iterative optimization can
be decreased by varying the selection strategy of a sample
that contributes to a morph (i.e. key selection). While OTB-
morph [9] utilises random sampling to produce a morphed
face at the signal level, we exploit the properties of opposite
demographic groups and dissimilarities of samples to generate
morphed facial images. Said demographic properties lead to
statistical assumptions already known in the literature [12]:
facial recognition algorithms produce higher similarity scores
and, hence, significantly more false matches for subjects
sharing similar demographic attributes, e.g. gender and skin
colour. Therefore, solutions that exploit the properties of
opposing demographic groups are expected to contribute to a
decrease in false matches. The findings of this work also lead
to a better understanding of how signal-level cancelable facial
biometrics can reduce the vulnerability of biometric systems
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Fig. 1: Conceptual overview of key selection-based OTB-morph .

against iterative optimization-based adversarial attacks.
The remainder of this paper is organised as follows: Sect. II

briefly introduces the related work. In Sect. III, a detailed
explanation of OTB-morph algorithm based on different key
selections is provided. Sect. IV-A presents the experimental
setup and the achieved results are reported in Sect. V. A
summary of the findings is finally provided in Sect. VI.

II. RELATED WORKS

This section provides a brief overview of cancelable
schemes applied to biometrics. In order to improve the security
and privacy of verification scenarios, the concept of cancelable
biometrics was first introduced by Ratha et al. [13]. In par-
ticular, a cancelable face recognition system was introduced
using image warping to transform biometric data in the signal
domain. Until now, many other popular cancelable techniques
have been developed for multiple biometric characteristics
based on the application of non-invertible transformations, see
[14]. Over the past years, the majority of these transformations
have been improved and, most recently, cancelable transforma-
tions have been designed to work with deep neural networks
(DNNs) architectures [8], [15]. Most of these approaches have
been focused on the feature extraction step while preserving
competitive biometric performance (i.e. discriminatory feature
space) and high privacy protection. It is worth noting that face
biometrics has recently been one of the biometric characteris-
tics that has raised the most privacy concerns. In this context of
privacy, some security gaps have been analysed on cancelable
face recognition systems, e.g. [16], [17]. Also, several authors
have addressed these gaps by introducing hybrid protection
schemes. Recently, Otroshi-Shahreza et al. [18] investigated
the hybrid protection by combining cancelable biometrics and
homomorphic encryption.

Ghafourin et al. [9] proposed a novel time-varying cance-
lable scheme called OTB-Morph using the morphing concept
as a cancelable transformation. The authors showed full pro-
tection of cancelable deep face templates against so-called
iterative optimization-based adversarial attacks.

In summary, most of the cancelable proposals described
above and existing in the literature have been analysed from
different security points of view, focusing on the template level
(e.g. [19]) and ensuring compliance with the requirements
defined by the ISO/IEC 24745 standard [10]: unlinkability,
irreversibility, renewability, and biometric performance. More-
over, recent research has studied adversarial attacks on state-
of-the-art deep facial recognition systems [5], [20], revealing
the vulnerability of facial biometric systems. To the best of the
authors’ knowledge and as mentioned in [9], OTB-morph has
been the first work of cancelable biometric template protec-
tion scheme addressing the security threat against adversarial
attacks based on iterative optimization. For comprehensive
surveys on cancelable biometrics, the interested reader is
referred to [8], [14], [21], [22].

III. OTB-MORPH

One-time-biometric via morphing (in short OTB-morph) is
a new cancelable method to withstand iterative optimization
attacks in face verification [9]. Inspired by the ultimate security
of a one-time pad [23] in conventional cryptography literature,
this method takes advantage of morphing as a transformation
function using time-varying keys (biometrics in this case)
to generate protected templates at each verification attempt
(Sect. III-A). Fig. 1 shows a conceptual overview of a veri-
fication scenario protected by cancelable biometrics designed
at the signal level (i.e. OTB-morph) that can be circumvented
by an adversarial attack (e.g. iterative optimization-based
attack). In this attack context, the non-authorised subject has
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Fig. 2: Examples of morph images (2nd row) resulting from morphing a reference image (large image on the left) with each
of the samples selected by the proposed key selection strategies (1st row). From left to right: Random key, Distance key,
SFdistance key, and SFrandom key.

presented face images (fake probes) to the biometric system
and observes the obtained comparison score and decision made
by the biometric system. Finally, the iterative optimization-
based attack (Sect. III-B) is injected into the system when a
biometric claim is made.

A. Operation mode

An authentication attempt using OTB-morph is executed as
follows: initially, a biometric claim is made; the facial image
corresponding to the probe is morphed with another sample
at the signal level using the OTB-morph approach, here,
a key selection-based transformation function is employed
signal-level morphing using the probe as the reference image;
subsequently, the morphed facial image (morphed probe) is
processed and a set of protected features is extracted using
a deep neural network (DNN); subsequently, these features
extracted from the morphed probe can be compared against
features stored (a biometric reference) in the biometric system.
Note that the features corresponding to the biometric reference
have already been processed by the OTB-morph approach in
an enrolment process. Also, it should be noted that the probe
and the biometric reference share the same key selection for
the morphing process. Finally, the biometric system verifies
whether the claim is genuine (i.e. the user’s identity (probe)
is the one being claimed) or not (i.e. the user is an impostor
trying to impersonate another user), and only allows access in
the former case.

In our work, facial images are morphed according to differ-
ent criteria to select the sample that can contribute to a morph:
1) by randomly choosing a single sample (Random key);
this type of selection has been used by OTB-Morph in the
original paper [9]; 2) by selecting the most dissimilar sample
(Distance key); to that end, a dissimilarity score comparator
is applied to the feature or embedding space to compute a
distance (s); 3) by choosing the most dissimilar sample from
the opposite demographic group (SFdistance key); for this
type of criteria, the demographic information statistics (e.g.
gender) should be measured; 4) similar to criteria 3) but
randomly selecting the sample from the opposite demographic
group (SFrandom key). Examples of resulting images for each
strategy are shown in Fig. 2.

B. Iterative optimization

The idea behind this attack is to minimize a dissimilarity
distance s between the victim’s VR face template (i.e. bio-
metric reference) and the attacker’s VA face template (Fake
Probe in the Fig. 1).Therefore, for each leaked score from
an impersonation attempt, the attacker updates VA with an
adversarial perturbation pa such that the dissimilarity score s
is minimized: mins |VR−VA|. At each iteration, the objective
function (mins) will be updated until the closest attack sample
to VR is found, i.e. until an impersonation attempt is success-
ful. Note that iterative optimization-based adversarial attacks
are well-known in the literature working with machine learning
techniques (e.g. deep learning) and can be easily optimized
using the gradients of DNNs, e.g. [24].

IV. EXPERIMENTAL SETUP

In this section, the metrics used to evaluate the different key
selection strategies as well as some implementation details are
summarised (Sect. IV-A). Databases and protocols employed
in the assessment are also outlined (Sect. IV-B).

A. Metrics and implementation details

Similar to [9], AdaFace [25] was utilised as face feature
extractor. Euclidean distance was utilised as a dissimilarity
score comparator. For the morphing image process, we use
the Dlib [26] implementation for landmark detection and
OpenCV as the morphing tool following the same settings
as in [9]. In particular, the morphing technique was applied
directly to full-face images. The transformed facial images are
then aligned and cropped using the open-source RetinaFace1

software. As mentioned in Sect. III-A, these experiments take
into account four different criteria for applying the morphing
technique: random selection (henceforth referred to as Ran-
dom key), the most dissimilar sample (henceforth referred
to as Distance key), the most dissimilar sample from the
opposite gender (i.e. female or male) (henceforth referred to
as SFdistance key), and random selection from the opposite
gender (henceforth referred to as SFrandom key).

The biometric performance is computed in a typical ver-
ification scenario compliant with the metrics defined in the

1https://github.com/serengil/retinaface
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Fig. 3: Biometric performance for different key selections.

ISO/IEC19795-1:2021 [27] standard. The Equal Error Rate
(EER), which represents the operating point at which False
Match Rates (FMR) and False Non-Match Rates (FNMR) are
equal, is reported. In addition, the FNMR values for several
security thresholds, i.e. 0 ≤ FMR ≤ 40 are depicted as
Detection Error Trade-off (DET) curves. We also analysed the
Attack Success Rate (ASR) which is defined by computing
the number of adversarial samples that were accepted by the
system at fixed security threshold.

B. Databases and protocols

Experiments are conducted on well-known face datasets
such as VGGFace2 [28] and LFW [29]. The former is utilised
for the biometric performance evaluation and execution of
the attack. More specifically, 50 identities were selected from
its test set; each identity consists of 88 samples. To evaluate
biometric performance, 28 samples per identity are randomly
selected, resulting in 50×14 mated comparisons and 50×91
non-mated comparisons. To conduct the attacks, the remaining
60 samples (30 references and 30 probes) are used per identity.
In this case, the iterative optimization adversarial-based attack
explained in Sect. III-B is performed on 30 samples from
the same identity. Note that the morph key generated by
key selection-based OTB-morph is changed at every face
verification attempt.

LFW is used for the morphing process and the application
of the different key selection criteria described in Sect. IV-A.
In this context, a single sample per identity with the highest
quality value estimated by the CR-FIQ framework2 is selected,
resulting in a total of 5,749 images.

V. RESULTS AND DISCUSSION

Fig. 3 benchmarks the biometric performance of different
key selection strategies as well as the unprotected system

2https://github.com/fdbtrs/CR-FIQA

TABLE I: Error rates (in %). The best results are highlighted
in bold.

System Selection of key EER FMR FNMR Threshold ASR

Unprotected

-

1.71

0.0010 2.00 1.1981 1.67
- 0.0100 2.00 1.2342 6.33
- 0.1000 2.00 1.2667 18.20
- 1.0000 1.86 1.3074 40.73

OTB-morph

Random key 0.86

0.0010 2.14 1.1543 0.47
0.0100 1.42 1.1894 2.07
0.1000 1.00 1.2292 8.93
1.0000 0.86 1.2781 29.60

Distance key 1.14

0.0010 11.29 1.0751 0.00
0.0100 2.71 1.1811 0.60
0.1000 1.29 1.2317 5.87
1.0000 1.14 1.2818 25.33

SFdistance key 0.57

0.0010 15.57 1.0370 0.00
0.0100 3.86 1.1451 1.00
0.1000 1.29 1.2043 7.60
1.0000 0.57 1.2566 25.40

SFrandom key 0.57

0.0010 15.57 0.9925 0.00
0.0100 3.86 1.1443 1.13
0.1000 1.14 1.2071 8.87
1.0000 0.57 1.2567 28.07

(i.e. baseline). Note that all proposed key selection criteria
outperform the unprotected system at the most commonly
used security threshold (i.e. FMR=0.1%). For higher security
thresholds (e.g. FMR=0.01%), the performance yielded by
all cancelable schemes is still comparable to the unprotected
system.

Tab. I also shows the biometric performance, as well as the
ASR values per key selection strategy and security threshold.
Note that the key selection process assists in reducing the
chances of attack compared to an unprotected system. In
particular, for a threshold fixed at FMR=0.1%, the attack
chance on protected systems is approximately seven times
lower than the one achieved by the unprotected system. For
stricter security thresholds, the protected scheme based on
Random key is vulnerable w.r.t. other key selections: Dis-
tance key, SFdistance key, and SFrandom key report a ASR
= 0% for a threshold fixed at FMR=0.001%, while a slight
increase above 1.0% is observed for FMR=0.01%.

Fig. 4 reports the average dissimilarity score achieved by
the attacker (i.e. evolutionary process) across 30 different
verification attempts. Note that the dissimilarity score com-
puted by the unprotected system gradually decreases across
the iterations, thus indicating that the attacker will be accepted
by the unprotected system after a few iterations or attempts
for a security threshold fixed at FMR=0.1% (horizontal black
line). Contrary to the trend shown by the unprotected system,
no drastic changes are observed in the trend computed by the
different key selection strategies. Note that such trends remain
constant and above the security threshold in most iterations.

Fig. 5 shows the cumulative attack chances for the different
evaluated systems across 30 iterations. It can be observed that
the attack rates strongly depend on the security thresholds
fixed in the system. In addition, these rates confirm the results
presented in Tab. I: the attack chances are reduced to 0% for
most of the key selection strategies at FMR=0.001% with the
exception of Random key (green line in Fig. 5a). More im-
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Fig. 4: Evolution of the average comparison score achieved
by the attacker. Horizontal black line visualizes the security
threshold fixed at FMR=0.1% in the baseline (i.e. unprotected
system).

portantly, the constant zero behaviour (i.e. complete blocking
of the attack) for all attempts can be observed, in contrast to
Random key. For FMR=0.01% (Fig. 5b), the attack chance
appears to be constant from a certain number of iterations for
some key selections (e.g. the attack is constant from iteration
15 for Distance key (blue line), SFdistance key (red line),
and SFrandom key (yellow line)). For FMR=0.1% (Fig. 5c),
Distance key (blue line) appears to be more promising, while
for the more relaxed thresholds (i.e. for FMR=1.0% (Fig. 5d)
and FMR=FNMR (Fig. 5e), the key selection based on oppo-
site demographic information (red and yellow lines) is more
challenging for the attacker. In summary, for the recommended
security threshold of FMR=0.1%, the most dissimilar image
(i.e. Distance key) is the best choice to be used as a key in
the morphing process.

VI. SUMMARY

This work has shown that cancelable biometrics working
at the signal level can be resistant to adversarial attacks.
More specifically, new defence mechanisms in key selection
strategies working on morphing techniques were shown to
drastically reduce the chances of impostors (e.g. impersonation
attempts) produced by the iterative optimization-based attack.
An empirical evaluation (OTB-morph in this case) showed that
the randomness of signal-level cancelable schemes does not
usually circumvent such attacks at their optimum. Here, the
knowledge of demographic information and score distances
reduced the chances of attack success down to zero percent
for the highest security levels in a protected face recognition
system. Future work will be focused on the impact of key
selection-based OTB-morph on the variation of the dissimilar-
ity function and face embedding extractors.
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