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Abstract: This study reports an experimental analysis of footsteps as a biometric. The focus here is on information extracted from
the spatial domain of signals collected from an array of piezoelectric sensors. Results are related to the largest footstep database
collected to date, with almost 20 000 valid footstep signals and more than 120 persons. A novel feature approach is proposed,
obtaining three-dimensional images of the distribution of the footstep pressure along the spatial course. Experimental work is
based on a verification mode with a holistic approach based on principal component analysis and support vector machines,
achieving results in the range of 6–10% equal error rate (EER) depending on the experimental conditions of quantity of data
used in the client models (200 and 40 signals per model, respectively). Also, this study includes the analysis of two
interesting factors affecting footstep signals and especially spatial domain features, namely, sensor density and the special
case of high heels.

1 Introduction

Footstep recognition is a relatively new biometric that aims at
discriminating persons using walking characteristics extracted
from floor-based sensors. One significant benefit of footsteps
over other, better-known modes is that footstep signals can be
collected unobtrusively with minimal or no personal
cooperation, which can be very convenient for the users.
Other benefits lie in the robustness to environmental
conditions, with minimal external noise sources to corrupt
the signals. Also, footstep signals do not reveal an identity
to other humans like the face or the voice, making footsteps
a less compromising mode.
Different techniques have been developed using different

sensors, features and classifiers as described in [1]. The
identification rates achieved of around 80–90% are
promising and give an idea of the potential of footsteps as a
biometric [2, 3]. However, these results are related to
relatively small databases in terms of number of persons
and footstep signals, typically around 15 people and
perhaps 20 footsteps per person [4]. In this paper, results
relate to the largest footstep database collected to date, with
more than 120 people and almost 20 000 signals, enabling
assessment with statistical significance.
Regarding the sensors employed to capture the footstep

signals, two main approaches have been followed in the
literature: switch sensors [5–7] have been used with a
relatively high sensor density (ranging from 50 to 1024
sensors per m2) in order to detect the shape and position of
the foot. On the other hand, different types of sensors that
capture transient pressure [4, 8–11] have been used with

relatively low sensor density (typically 9 sensors per m2),
more focused on the transient information of the signals
along the time course.
The capture system considered here uses a high density of

approximately 650 piezoelectric sensors per m2, which gives
a good spatial information and measures transient pressure, in
contrast to previous works.
This paper is focused on the analysis of the spatial

information of the footstep signals. A novel feature
approach is proposed, obtaining 3D images of the
distribution of the footstep pressure along the spatial course.
Verification results achieved are in the range of 6–10% of
EER depending on the quantity of data used to train the
client models (200 and 40 signals per model for the given
results, respectively). A similar analysis was presented in
[12], but focusing on the temporal information of the
signals. In addition, we consider in this paper the effect of
two factors affecting footstep signal performance, namely,
sensor density and the case of high heel shoes.
The paper is organised as follows. Section 2 describes the

footstep signals and the collection of the database. Section 3
presents the feature extraction process, focused on spatial
information. Section 4 describes the experimental protocol
followed, Section 5 presents the experimental results; and
finally conclusions are drawn in Section 6.

2 Footstep signals and database collection

As mentioned above, the main objective regarding the
footstep signals was to obtain signals with biometric
information in both time and spatial domains. Therefore the
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capture system developed to collect the footstep database uses
piezoelectric sensors with a relatively high density, this way
footstep signals collected contain information in both time
and spatial domains. This is in contrast to previous related
works, for example, [6–8]. Piezoelectric sensors have some
properties that make them very appealing for the application
including low cost, robustness and a very thin profile that is
ideal for under-floor concealment. As stated in [9],
‘piezoelectric sensors seem perfectly adequate for this
application even with their low cost’. Piezoelectric sensors
provide a differential voltage output that is directly
proportional to the applied pressure.
The sensors were mounted on a large printed circuit board

and placed under a conventional mat. There are two such mats
positioned appropriately to capture a typical (right, left) stride
footstep. Each mat contains 88 piezoelectric sensors in an area
of 30 × 45 cm, with a sampling frequency of 1.6 kHz. The
footstep sensor area, illustrated in Fig. 1a, is positioned at
the entrance of a laboratory.
Fig. 1b shows a diagram of the distribution of the sensors in

each array. The sensors have a diameter of 2.7 cm and the
distance between two adjacent sensors is 1.2 cm. The
geometry (608 cellular layout) ensures a compact layout
with uniform inter-sensor distance. Fig. 2 shows an
example of footstep signal with information in both time
and spatial domains obtained with the sensor distribution
described. Fig. 2a shows the amplitude of the 88 pressure
signals of one footstep against time, and Fig. 2b shows the

accumulated pressure in time for the 88 sensors for the X
and Y spatial axis.
Regarding the collection of the database, one of the main

objectives was to collect a database as large as possible.
The first session of each person was a supervised
enrolment, where a supervisor explained how to provide the
footstep data. In this sense persons were asked to walk at a
natural speed a few metres before the sensor mats (see
Fig. 1a) in order to produce more realistic signals. Persons
were encouraged to return as often as they could to provide
further sample signals. These following sessions, and
therefore the majority of the database were collected on an
unsupervised mode. The enrolment of persons in the system
was continuous during the collection period (16 months).
Also, different people provided data during different periods
of time and in different number of sessions (different days),
because as stated before the objective was to obtain a large
database.
The main characteristic of the database collected is that it

contains a large amount of data for a small subset of people
(.200 signals for 15 people) and a smaller quantity of data
for a larger group of people (.10 signals for 60 people).
This reflects the mode of capture which was voluntary and
without reward.
Fig. 3 shows the number of footstep signals per person in

the database. There is a total of 9990 stride footstep signals,

Fig. 1 Footstep sensors location and distribution

a Two footstep sensor arrays in the laboratory where the capture system is
installed. Sensors are shown here with the mats removed
b Dimension of the sensors and geometry between adjacent sensors

Fig. 2 Example of a footstep signal with time and spatial information

a Time domain signal: Sensor signals against time
b Spatial domain signal: Accumulated pressure for the 88 sensors for the X and Y spatial axis

Fig. 3 Number of footstep signals against number of persons in the
footstep database
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that is, 19 980 single (right, left) footstep signals from the 127
persons enrolled. Fig. 6 shows two diagrams of the divisions
of the data into different datasets for the experiments.
Regarding the type of footwear employed, persons were

free to walk with different types of footwear such as shoes,
trainers, boots, flip-flops, barefoot and even high heels (as
reported in Section 5.2). Also, people were allowed to carry
weights such as office bags. The associated biometric data
from the different conditions were absorbed in the
experiments reported, meaning that the results are more
realistic in terms of the breadth of conditions encompassed.
The population of the database is mainly constrained to

university students (undergraduates and postgraduates), as
shown in Fig. 4a. The mean age value is 23.7 years
and the ratio male/female is of 65% of males and 35% of
females.
Fig. 4b shows the distribution of the height, having an

overall average of 174 cm. Fig. 4c shows the distribution of
the weight, which is mainly between values of 50 and
90 kg with a mean of 69.8 kg. Fig. 4d shows the
distribution of the shoe sizes of the population, which is
quite broad, having a mean value of 8.1 UK size.
More information about the collection and labelling of the

database can be found in [13, 14].

3 Feature extraction and matching

This section describes the spatial domain features that are
used to assess the footstep signals as a biometric. A feature
approach based on time-domain information was proposed
in [12]. As a brief description, three features were extracted

from the time-domain information of the signals. The first
was the popular ground reaction force (GRF) used
previously in [2, 4, 8, 11, 15], in this case an average
across all sensors was carried out to obtain a global profile
for the GRF. The other two features were the spatial
average of the sensors, which results in a single average
profile of all sensors of the footstep signal; and finally the
upper and lower contour profiles of the time domain signal.
These three features were fused at the feature level, data
dimensionality was reduced using principal component
analysis (PCA) and finally, support vector machines
(SVMs) were used to carry out the matching.
In this paper, the feature extraction is carried out over the

spatial-domain information contained in the footstep
signals. In this case, the time-domain information is not
considered, so a single value of the pressure of each sensor
of the mat is obtained by integrating the signals across the
time axis. It is worth noting that owing to the differential
nature of the footstep signals obtained from the
piezoelectric sensors, a simple integration of the signal
across the time would produce an approximately zero value.
To solve this, the integration is carried out over the related
GRF signal of each sensor (GRFi). This way we obtain the
accumulated pressure (APi), which is the measure used to
study the distribution of the pressure across the spatial
domain of the signals, as shown in Fig. 2b.
In the pre-processing stage, an energy detector across the

88 sensors of the signals is used to obtain the beginning of
each footstep in order to align the signals to a common
time position. Formally, si[t] is the output of the
piezoelectric sensor i, i ¼ 1, . . . , 88 and t ¼ 1, . . . , Tmax are

Fig. 4 Statistics of the population of the database

a Distribution of the age of the population, the mean being 23.7 years
b Distribution of the height of the population, the mean being 174 cm
c Distribution of the weight of the population, the mean being 69.8 kg
d Distribution of the shoe size of the population, the mean being 8.1 UK shoe size
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the time samples. Tmax was set to a value of 2000 time
samples large enough for all footstep signals considered.
Then, the GRFi and APi are defined by

GRFi[t] =
∑t

t=0

(si[t]) (1)

APi =
∑Tmax

t=0

(GRFi[t]) (2)

The GRFi[t] results in a profile per sensor, which is the
integration of the output signal from the piezoelectric
sensor. The APi gives a single value of the accumulated
pressure for each sensor of the mat. Fig. 2b represents the
88 values of APi in the X and Y spatial axes for an example
footstep signal. In this case, we have used an image
resolution of one pixel per mm2, giving the values APi to
the positions with sensors and zeros to the rest of the
image, keeping this way the original geometry of the
sensors. This resolution was chosen for simplicity, but in a
real-time application it is likely that similar recognition
results could be obtained with a lower image resolution.
The following step is the alignment and rotation of the

spatial images to a fixed central position, but before, the
images were smoothed using a Gaussian filter (defined in
(3)) in order to obtain a continuous image as if we had a

much higher sensor resolution. Bicubic spline interpolation
was also tried but better results were obtained using the
Gaussian filter. Figs. 5a and b show the result image for the
given example after the Gaussian filter from a lateral and a
top view, respectively. Best result images were obtained
using values of x, y ¼ 1, . . . , 100 and s ¼ 14 for the filter.

G(x, y) = 1

2ps2
e−(x2+y2/2s2) (3)

These images are then aligned and rotated based on the points
with maximum pressure, corresponding with the toe and the
heel areas, respectively. The aligned and rotated image is
shown in Fig. 5c, which is used to carry out the biometric
classification.
The rows of the resulting image, which has a dimension of

280 × 420 pixels, are concatenated to form a feature vector of
dimension 117 600. Data dimensionality are also reduced
using PCA [16], retaining more than 96% of the original
information by using the first 140 principal components.
For the case of the stride (right and left) footstep, the
feature vector comprises the concatenation of the 140
component feature vectors for the right and left foot plus
the relative angle and length of the stride, that is, 282
features. Regarding the classifier, an SVM [17] was adopted
with a radial basis function (RBF) as the kernel, because of
very good performance in previous studies in this area [2, 3].

Fig. 5 Feature extraction in spatial domain for a footstep signal

a 3D view image result for the smoothing of signal from Fig. 2b with a Gaussian filter
b Same as a but from a top view
c Footstep spatial image after alignment and rotation to a common centre

Fig. 6 Number of footstep signals against number of subjects in the database

Diagram of the database with the different divisions of Training, Validation and Evaluation sets for benchmarks B1 and B2. Numbers are described in Table 1
a Benchmark B1
b Benchmark B2
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4 Experimental protocol

Regarding the experimental protocol followed to assess
footsteps as a biometric, special attention was paid to the
partitioning of the data into three sets, namely Training,
Validation and Evaluation sets. Fig. 6 shows two diagrams
of the partitioning of the database into three datasets.
The Training set comprises a set of in-class data used to

train one model per client and a set of out-class data from a
cohort of impostors, which is also used in the training
process to obtain better statistical models. PCA
transformation is only carried out with the data from the
Training set, and the coefficients of the PCA transformation
are then applied to the data of the Validation and
Evaluation sets to reduce their dimensionality too. Also,
SVM is used in the training stage to train a model per client.
Validation and Evaluation sets are two test sets, the main

difference being that the Evaluation set is a balanced set
comprising the last five footstep signals provided by
persons P1–P110, while the Validation set is an unbalanced
set that contains a larger number of test signals for subjects
included in the Training data. The Validation set is used to
tune the system, that is, type of features, number of PCA
components, SVM parameters etc., in order to obtain the
best results. The Evaluation set comprises unseen data, not
used in the development of the system.
It is worth noting that in this paper the data used in the

different sets keep the chronological time of the collection.
Therefore the training data comprises the first data provided
by each user, and the data used in the Evaluation set are the
last collected. This is a realistic approach reflecting actual
usage in contrast to previous related works, for example, [3,
5, 6], which randomly divide the data into training and test
sets, or use a leave-one-out approach.
The influence of the quantity of data used to train and test

the system is a key factor in any performance assessment;
while common in more established biometric modes, this
aspect is not considered in many cases of footstep studies,
for example in [4, 8, 9], owing to limited numbers of data
per person in the databases. Different applications can be
simulated using different quantities of data in the client
models. In the present work, we simulate important
applications such as smart homes and access control
scenarios. In the case of a smart home, there would be
potentially a very large quantity of training data available
for a small number of clients, while in security-access
scenarios such as a border control, limited training data
would be available, but potentially for a very large group of
clients.
Two benchmark points have been defined to simulate

conditions of different applications, as can be seen in

Fig. 6: benchmark B1, which could simulate a security-
access scenario, is set to use 40 footstep signals per client to
train the models having a group of 40 clients (and therefore
40 models); and benchmark B2, which could simulate a
smart home scenario, is set to use 200 footstep signals per
client to train the models having a group of 15 clients.
Table 1 shows the quantity of data used in benchmarks B1

and B2 for the different datasets. Each signal from the test sets
is matched against all the trained models (40 models in B1
and 15 in B2). As can be seen in the table, the total number
of stride signals in the database is 9990, that is 19 980
single (right and left) signals in total.

5 Experimental results

This section describes the assessment of the spatial domain
features described in Section 3 following the protocols
defined in Section 2.
Fig. 7 shows the detection error tradeoff (DET) curves

obtained for the Validation set for the cases of the stride and
single (right, left) footstep signals for the spatial features
described in Section 3. Fig. 7a shows the results for B1, that
is, using 40 client models and 40 signals to train each model.
Error rates of 10.5% are achieved for the case of stride
footsteps and an average of 13.6% for the case of single
footsteps. Fig. 7b shows the DET curves results for B2, that
is, using 15 models and 200 signals per model. Error rates of
6.2% are achieved for the case of stride footsteps and an
average of 9.6% for the case of single footsteps.
As can be seen in both cases there is an improvement of

around 3% EER when single footstep signals are
concatenated to produce a stride footstep signal. Previous
experiments [2] showed an identification accuracy of 63%
using a single footstep signal as a test, and improving to a
92% when six consecutive footstep signals were used. This
implies that even better EER results could be obtained in
case of concatenating more than two footstep signals. It is
worth noting that results in the same range were achieved in
[12], which presented a similar experimental protocol but
for the case of the time domain information of the signals.
Although the conditions of B1 and B2 are not directly

comparative there is an improvement of performance of
4.4% EER for the stride case for B2 compared with B1.
This increment of performance could be an effect of the
different amounts of signals in the client models or owing
to the different number of clients in the two benchmarks.
In order to study this difference in performance, a further

experiment was designed keeping the number of client
models and varying the number of signals in the models.
Fig. 8 shows the EER against different quantities of signals

Table 1 Database configuration for benchmarks B1 and B2. B1 contains 40 models and 40 signals per model and B2 contains 15 models

and 200 signals per model

Benchmark B1 Benchmark B2

Training set Validation set Evaluation set Training set Validation set Evaluation set

clients P1–P40 P1–P40 P1 –P40 P1–P15 P1–P15 P1–P15

signals per client 40 170 (8–650) 5 200 210 (15–490) 5

total signals clients 1600 6697 200 3000 3113 75

cohort impostors P41–P127 P41–P78 P41–P110 P16–P127 P16–P78 P16–P110

total signals impostors 763 380 350 2697 630 475

total signals per set 2363 7077 550 5697 3743 550

total 9990 9990
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used to train each client model for the case of stride footsteps.
There are three profiles, one considering 15 client models
giving values of EER from 1 to 200 signals used to train
the models, another profile considering 5 client models but
giving values of EER from 1 up to 500 signals used to train
the models and the case of using the maximum number of
client models available at each condition, that is, 5 models
for 500 signals, 20 models for 200 signals, 40 models for
40 signals etc. The three profiles have a similar overall
shape with a great improvement in performance when using
1–20 footstep signals for training, falling from an average
of 33–11% EER, and then the performance keeps
improving slowly to 4% EER with 500 signals to train the
system (for the case of using 5 client models). Results
obtained in the three cases are very similar, so it can be
concluded that the improvement of performance is mainly
owing to the number of signals used to train the client
model rather than to the number of models considered.
Fig. 9 shows the DET curves obtained for the Evaluation

set for benchmarks B1 and B2 for the stride footsteps. In
both cases, the result obtained for the Evaluation set is
compared with the case of the Validation set as shown in
Fig. 7. The data used in the Validation and Evaluation sets

are specified in Table 1. In both cases of B1 and B2 there
is a superior performance for the case of the Validation set
compared with the Evaluation, with an absolute increment
of 5.5 and 2.6% EER for B1 and B2, respectively. This
degradation of performance for the case of the Evaluation
set could be because of the big time gap between the data
used for training and test signals because in this case the
Evaluation set comprises the last signals collected for each
person and the signals comprising the Training set are the
first 40 and 200 signals per person for B1 and B2,
respectively (see Fig. 6). This effect of the relationship of
the time gap between training and test data and
performance is an interesting line of further investigation.

5.1 Influence of the sensor density in the
performance

This section studies the influence of the sensor density, and
how it affects the performance, as this has not been
considered in previous works. It is obvious that if the
sensor density is higher, more information can be extracted,
but up to a spatial sampling limit.
Fig. 10 shows a diagram of the geometry and density of the

piezoelectric sensors, for an example 9 UK size foot (27.5 cm
long). A standard 88 sensor density (650 sensors per m2) plus
two sub-sampling conditions are considered. The sub-
sampling process is illustrated in the figure with the
geometry of the sensors used for Density 1 and for Density 2.
Density 1 reduces the original sensor density by 34%, that

is, from 88 to 58 sensors (430 sensors per m2), and Density 2
reduces the original sensor density by 66%, that is, from 88 to
30 sensors (220 sensors per m2). Density 2 was the optimal
sampling distribution having the sensors in a hexagonal
array. To have another sampling distribution with a higher
sensor density, sensors not used in Density 2 were used to
form Density 1.
Fig. 11 shows EER results for benchmarks B1 and B2 for

the three densities for the case of the stride footstep. The
trends of EER are very similar for both benchmarks, with
an average increment of 7.7% EER for Density 1 compared
with the baseline, and an average increment of 13.2% EER
for Density 2 compared with the baseline. As can be seen
the spatial features are very much affected by the reduction
of the sensor density.

Fig. 7 DET curves for spatial features extracted from the signals for the Validation set

a Results for benchmark B1 (40 models, 40 signals/model)
b For benchmark B2 (15 models, 200 signals/model)

Fig. 8 EER against number of signals used to train the client
models in different benchmarks for the stride footstep for the cases
of using 5, 15 client models and using the maximum number of
client models available at each condition
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It can be concluded that at least 650 sensors per m2 are
required to give the good performance presented in this
paper when only spatial information is considered. Given
the trends of profiles in Fig. 11, a higher density might
provide even better results.

5.2 Analysis of the special case of high heels

This section analyses the effect of the special case of high heels
on the performance. Persons contributing to the database do so
under different conditions such as different types of footwear
or extra weight. These conditions are absorbed in the
experiments, meaning that the results are more realistic
because of the breadth of conditions encompassed.
Here the effect of high heels is analysed using an

illustrative example of 40 footstep signals provided by one
subject wearing high heels in three different sessions (two
different pairs of heels). Fig. 12 shows two footstep
examples for this subject; in (a), (b) and (c) the person is
wearing trainers and in (d), (e) and (f) the person is
wearing high heels. As expected, high-heel data looks
completely different, as can be seen in Fig. 12; and
therefore higher error rates are to be expected for these
signals.

The analysis was carried out using the same experimental
protocol described in Section 2 for B1, that is, having 40
client models, each comprising 40 signals to train each
model, and the Validation test set. Two different
experiments were considered:

† Experiment 1. In this case no data with high heels were
included in the model for the subject under study, and
errors produced by 20 test signals with high heels for that
person were analysed.
† Experiment 2. In this case 10 signals with high heels were
included in the model for the subject under study (25% of the
total training data for that subject), and errors produced by the
same 20 test signals as in Experiment 1, which were collected
in a different session were analysed.

Table 2 shows the results of the error analysis carried out
for the two experiments. The 20 test signals analysed with
high heels for the subject under study were compared with
the 40 client models available, having for each test one
genuine comparison (with the model from the subject under
study) and 39 false comparisons with the rest 39 client
models; so in total there are 20 genuine comparisons and
780 impostor comparisons. This error analysis was carried

Fig. 9 DET curves for the Evaluation set of stride footstep signals

Comparison of results for the Evaluation set for benchmarks B1 and B2
a Evaluation for benchmark B1
b Evaluation for benchmark B2

Fig. 11 EER against three different sensor densities for
benchmarks B1 and B2 and stride footstep

Baseline density (650 sensors per m2), Density 1 (430 sensors per m2) and
Density 2 (220 sensors per m2)

Fig. 10 Density of the array of piezoelectric sensors

Example of a 9 UK size foot (27.5 cm long)
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out for the cases of time-domain features (as in [12]) and
spatial domain features (as described in Section 3).
Percentages of ‘false rejection rate’ (FRR) and ‘false
acceptance rate’ (FAR) are given in Table 2. Percentages
are obtained by using the threshold that gave the EER.
As could be expected, results shown in Table 2 for

Experiment 1 are significantly worse compared with those
obtained for Experiment 2, the case where signals with
high-heels condition are present in both training and test
sets. In the case of Experiment 1 the FRR is very high as
there are a greater number of true tests below the threshold.
It is interesting to note that results are slightly worse for the
case of spatial domain features compared with the time-
domain features, as the distribution of the pressure across
the space is more affected by the condition of high heels
(as can be seen in Figs. 12c and f). It can be concluded that
high heels degrade the performance, but this effect can be
significantly reduced when the same condition is included
in the training data (as in Experiment 2).
An equivalent analysis of this could be done on other

footwear conditions or extra weight, which is proposed as
further work.

6 Conclusions

This paper studies footstep signals as a biometric focusing on
the spatial information of the signals. A novel feature
approach extracts biometric information from the
distribution of the pressure of the footsteps signals along
the spatial domain.
The experimental protocol is designed to study the

influence of the quantity of data used in the client models,
simulating conditions of possible extreme applications such
as smart homes or border control scenarios. Results in the
range of 6–10% EER are achieved in the different
conditions for the case of the stride footstep. These results
are in the same range as those achieved in [12] for a similar
approach but considering the temporal information of the
signals, which implies that the time and spatial information
extracted from the footstep signals have similar
discriminatory properties.
It is worth noting that the experimental set-up here is the

most realistic at least in two factors: (i) it considers the
largest footstep database to date and (ii) it keeps the time
lapse between training and test data, in contrast to most
previous works, for example [3 5, 6], which randomise the
time sequence of the data in the experiments.
This paper also analyses two important factors not taken into

account in previous studies in the area. Capturing systems have
used different sensor densities, but there is no study of the
influence of the variation of sensor density in the
performance, which is considered here for the first time.
Experiments show that reduction of the sensor density affects
significantly the recognition performance. This indicates that
a relatively high density is necessary and might well
contribute to the good recognition performance reported here
compared with that in related publications [2, 9].

Fig. 12 Examples of footstep signals with two types of footwear

a Person wearing trainers
b Response of the piezoelectric sensors against time for example in a
c Accumulated pressure in the spatial domain, for example in a
d, e and f Same but for the case of the same person wearing high heels

Table 2 Error analysis for the case of high heels. Results

obtained for 20 signals with high heels tested against 40 client

models

Condition Exp 1: no heels in

training

Exp 2: heels in

training

FRR, % FAR, % FRR, % FAR, %

time 70 12.3 0 9.2

space 75 12.8 10 11.3
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Also, the special case of the high heels has been analysed,
which is a good illustrative example, of the capacity of the
database considered here. The error analysis shows that
high heels affect significantly the performance; however,
this can be reduced when the same conditions are included
in the training data.
For further work, it would be interesting to carry out a

fusion of both approaches of time and spatial domain
information, as well as a holistic feature approach to extract
both time and spatial information from the signals
simultaneously.
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