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Abstract—Footstep recognition is a relatively new biometric which aims to discriminate people using walking characteristics extracted

from floor-based sensors. This paper reports for the first time a comparative assessment of the spatiotemporal information contained in

the footstep signals for person recognition. Experiments are carried out on the largest footstep database collected to date, with almost

20,000 valid footstep signals and more than 120 people. Results show very similar performance for both spatial and temporal

approaches (5 to 15 percent EER depending on the experimental setup), and a significant improvement is achieved for their fusion

(2.5 to 10 percent EER). The assessment protocol is focused on the influence of the quantity of data used in the reference models,

which serves to simulate conditions of different potential applications such as smart homes or security access scenarios.

Index Terms—Biometrics, footstep recognition, gait recognition, pressure analysis, pattern recognition
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1 INTRODUCTION

THE growth in biometrics has been very significant in the
last few years, not only for the most popular modes

such as fingerprint, speech, or face, but as well for the lesser
known biometrics such as otoacoustic emissions, palm or
footsteps. This paper is focused on the assessment of
footstep signals as a relatively new biometric with a
comparative analysis and fusion of spatiotemporal informa-
tion of the signals. In this work, footstep signals are
captured from people walking over an instrumented
sensing area, in contrast to some works using the sound
of the footsteps [1]. It is worth noting that some works in
this area [2], [3], [4] refer to footstep recognition as part of
gait recognition [5], but using a floor-based approach.

One significant benefit of footsteps over other, better
known modes is that footstep signals can be collected
unobtrusively with minimal or no person cooperation; this
can be very convenient for the user. Other benefits lie in the
robustness to environmental conditions, with minimal
external noise sources to corrupt the signals. Also, footstep
signals do not reveal an identity to other humans, like the
face or the voice, making footsteps a less sensitive mode.
Footsteps might prove to be an ideal complementary
biometric, considering the scenario of a person walking to

other arrangement systems such as a passport control, door
entry system or a fingerprint scanner. For example, the case
of the fusion of footsteps with face and iris systems at a
distance in a security gate scenario is very appealing [6].

As described in [7], footstep recognition was first
suggested as a biometric in 1977 [8], but it was not until
1997 when the first experiments were reported [9]. Since
then the subject has received relatively little attention in the
literature compared to other biometrics. A review is
presented in Section 2 covering sensors, features, and
approaches to classification. The associated results are
promising and give an idea of the potential of footsteps as
a biometric [10], [11]; however, these results are related to
relatively small databases in terms of number of people and
footsteps, and this is a limitation of the work to date.

A database is an essential tool to assess any biometric;
therefore, this paper reports experimental results of foot-
steps as a biometric on the largest footstep database to date,
with more than 120 people and almost 20,000 signals,
enabling assessment with statistical significance.

The main contribution of the present work is the
assessment of footsteps in time, in space, and in a
combination of the two. Features extracted in the time
domain include the ground reaction force (GRF), the spatial
average, and the upper and lower contours of the pressure
signals, while in the spatial domain, 3D images of the
accumulated pressure are obtained. Interestingly, the per-
formance for the two domains proves to be very similar, with
equal error rates (EERs) in the range of 5-15 percent for each
domain, depending on the experimental setup, and in the
range of 2.5-10 percent for their fusion. Results achieved are
considerably better compared to other existing methods
(e.g., [3], [10]). This paper also considers some important
factors for footstep recognition not included in previous
related works, such as the influence of the quantity of data
used in the training stage of the system, which serves to
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simulate various potential applications, and the effect of the
sensor density on the performance.

The paper is organized as follows: Section 2 describes
related work in order to put ours in context. Section 3
introduces the collection process of the database and the
signals obtained. Feature extraction is covered in Section 4,
paying special attention to the spatial and temporal
components of the signals. Section 5 describes the experi-
mental protocol followed. Experimental results are pre-
sented and analyzed in Section 6, and finally, conclusions
and future work are drawn in Section 7.

2 RELATED WORK

A general classification of biometrics is often made into
physiological and behavioral modes (see, for example, [23]).
Clearly this is not an orthogonal classification since most of
the behavioral modes are affected by physiological char-
acteristics. It is interesting to note that in the case of the
behavioral modes the main biometric information is carried
along the time axis of the signals.

Footstep signals, and others such as gait or talking face,
can be seen as dual biometrics due to the fact that
information can be extracted from both the physiological
and behavioral components to carry out person recognition.
In this paper, we present a new approach to the study of
footstep signals, viewing them in the orthogonal dimen-
sions of time and space (named BTime and BSpace,
respectively, throughout the remainder of this paper).

This duality of footsteps is reinforced in the literature
when reviewing the two main approaches, namely:
1) switch sensors [2], [4], [14], [19], and 2) pressure sensors
[9], [12], [13], [17], [20], [24]. Switch sensors have been used
with a range of densities from 50 to 1,000 sensors per m2;
this is much higher than the density of approaches using
pressure sensors. Approaches based on switch sensors have
focused more on the study of the spatial distribution of
footstep signals (BSpace), while approaches based on
pressure sensors have focused more on the study of the
footstep pressure dynamics along the time course (BTime).

As an exception, Jung et al. [15] used a commercial
pressure mat with a high sensor density, but only used the
spatial domain information. Very recently, Qian et al. [3]
also used a commercial pressure mat, extracting the center
of pressure (COP) information and adding the pressure
information, therefore using time and spatial pressure
information only for some selected key points (geometric
approach). Section 6.3.1 compares results with our pro-
posed method.

Table 1 presents a comparison of the published work on
footsteps as a biometric with reported systems in the rows
in a chronological order and parameters in the columns.

The second column of the table shows database sizes. As
can be seen, a common characteristic of most of the
referenced works is the relatively small size of the databases
in relation to other biometric evaluations where people are
normally counted in hundreds or thousands and the
number of tests perhaps in many thousands. Apart from
our initial investigations (41 people and 3,174 footsteps
[20]), a maximum number of 16 people [13] and 5,690
footstep examples [3] were gathered. The experiments

reported here are carried out over the largest footstep to
date, with 9,990 stride footstep signals from 127 persons.

In each case, except for [2], [17], the databases are
divided into training and testing sets, but none use
independent development and evaluation sets, with
the exception of our works [11], [20], [21], [22], a limitation
which makes application performance predictions much
more difficult. In the work that follows, emphasis is placed
on training/test and validation/evaluation sets.

Identification, rather than verification, was the task
considered in the majority of the above cases. Identification
has the benefit of utilizing the available data to a maximum,
but suffers from well-known scalability problems in terms
of the number of classes in the set.

It is interesting to point out that some systems present
classification results for stride data (consecutive footsteps),
e.g., [2], [3], [10], while others are for a single footstep,
e.g., [12], [20]. In [10], an identification accuracy of
63 percent using a single footstep as a test was improved
to 92 percent when six consecutive footsteps were used,
showing the benefits of using stride data compared to
single footstep signals.

Regarding the classification, different methods have been
used, as can be seen in the table. In [10], Suutala and Roning
presented a comparison of performance for various
classification methods such as KNN, LVQ, RBF, MLP, and
SVM, obtaining the best results for the cases of MLP and
SVM, which has been reinforced by Yun [4].

3 DATA ACQUISITION

This section describes, on the one hand, the sensor
arrangement and the corresponding footstep signals ob-
tained, and on the other hand, the resultant database
(SFootBD) that has been collected.

3.1 Sensor Arrangement and Footstep Signals

The sensor approach developed here combines the char-
acteristics of a high sensor density and the sampled
pressure obtained from piezoelectric sensors. The first
characteristic enables the extraction of spatial information
regarding shape and position of the foot (BSpace), and the
second provides the information of the pressure along the
time course (BTime), thus resulting in footstep signals
which contain more information than that available from
approaches published previously, such as [2], [12], [19].
Exceptions are [3], [15], which used commercial pressure
mats with high sensor density (10,000 sensors per m2), but
very low time frequency sampling (30-40 Hz).

The system developed is comprised of two sensor mats
positioned to capture one stride for each signature, i.e.,
signals from two consecutive footsteps (right foot then left
foot). Each mat measures 45� 30 cm and contains 88 piezo-
electric sensors, giving a sensor resolution of approxi-
mately 650 sensors per m2; the sampling frequency
associated with each sensor is 1.6 kHz, therefore having a
capture system with high time and high spatial resolution
for the first time. Fig. 1 shows a diagram of the spatial
distribution of the piezoelectric sensor mats employed to
capture the footstep signals.
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Footstep signals collected here contain information in
four dimensions, namely, pressure magnitude, time, and
spatial positions X and Y . Fig. 2 shows three different 3D
plots for an example of a footstep signal, reflecting its three
stages: Fig. 2a shows the differential pressure for an instant
in the first stage of the footstep, i.e., when the heel strikes
the sensor mat, Fig. 2b shows the same but for an instant in
the second stage of the footstep, i.e., when the whole foot
rests over the sensors, and Fig. 2c the same but for an
instant in the third stage of the footstep, i.e., when the heel
leaves the surface and the toes push off the sensor mat. It is
worth noting that the output of the piezoelectric sensors is
the differential pressure in time; thus, it can be seen in
Fig. 2c that there are negative values.

In this paper, footstep signals are studied in the time and
spatial domains separately, which enables comparison with
previous related work and gives an indication of the
discriminative power of the signals in each domain.

3.2 Database Collection and Labelling

The main objective regarding database size was to collect a
database as large as possible; therefore, an automatic

capture system was developed in order to collect the
biometric data without the need for human intervention.
The first session of each person was a supervised
enrolment, where a supervisor explained how to provide
the footstep data. In this sense, people were asked to walk at
a natural speed a few meters before the sensor mats in order
to produce more realistic signals. People were encouraged
to return as often as they could to provide further sample
signals. These following sessions, and therefore the majority
of the database, were collected on an unsupervised mode.
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Fig. 1. Spatial distribution of the piezoeletric sensors.

TABLE 1
Comparison of Approaches to Footstep Recognition



The enrollment of people in the system was continuous
during the collection period. Also, different people pro-
vided data during different periods of time and in different
numbers of sessions because, as stated before, the objective
was to obtain a large database. More details about the
database can be found in [22].

A characteristic of the footstep signals is that they do not
reveal human identity directly or, in otherwords, they cannot
be used by humans to carry out recognition. Thus, apart from
the footstep signals, other support biometric modes were
captured simultaneously with same timestamps. These
support modes are speech, face, and gait. They were used
to assist with both manual and automatic database labeling,
and in the cross-checking of apparent label anomalies
(suspected errors that might arise during experiments).

Another benefit of having the extra modes is the
opportunity to assess them as biometrics in a multimodal
manner. Fig. 3 illustrates the setup of the capture system
with four biometric modalities which are all acquired with
the same timestamps.

The speech mode was deemed to be very appealing for
the automatic labeling of the database using speaker
recognition [25]. This procedure has resulted in the largest

footstep database to date, with over 120 people and almost
20,000 valid footstep signals (i.e., 10,000 stride signals),
leading to a more reliable assessment of footsteps as a
biometric. The database was collected in various sessions
per user during a period of 16 months.

A characteristic of the labeled database considered here
is that it contains a large amount of data for a small subset
of subjects (> 200 signals per subject, for 15 subjects), which
could serve to simulate a smart home scenario; and a
smaller quantity of data for a larger group of subjects (> 20
signals per subject, for 54 subjects), which could serve to
simulate a security access scenario. This reflects that the
mode of capture which was voluntary and unsupervised.
Fig. 4 shows the number of stride footstep signals per
person in the database. The footstep database (SFootBD) is
available to the research community in [26].

It is interesting to note that people were allowed to walk
over the footstep sensors with different types of footwear
(shoes, trainers, boots, barefoot, etc.) and carrying weights
such as office bags, which makes signals collected more
realistic. This is in contrast to most databases in the field
which only contain people walking barefoot.

4 FEATURE EXTRACTION

This section describes the feature extraction process with a
special emphasis on the time and spatial information
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Fig. 2. Spatiotemporal footstep signal in different stages. (a) The time derivative of the pressure against the position X and Y at the first stage of
footstep; (b) and (c) the same but for second and third stages of the footstep signal.

Fig. 3. Four sources of data captured, clockwise from top left: footstep
signals, speech identifier, face, and gait videos. Footstep is the primary
mode, the other three are support modes. The four modes are
connected with a common timestamp.

Fig. 4. Number of footstep signals against number of people in the
footstep database.



contained in the footstep signals. These two types of
features are extracted independently in order to be
compared, and are fused in a later stage described in
Section 6.2.

4.1 Time Domain Features (BTime)

The most popular time domain feature in related works is
the ground reaction force [3], [9], [10], [12], [16], [17]. In
most of the cases, some key points are extracted from the
GRF profile using the time and the pressure value
coordinates as features, together with some distance
measures between some of them (geometric approach) [7].

In the case considered here, the time domain information
of the footstep signals is extracted from the differential
pressure of the sensors along the time axis without
considering their spatial distribution, similar to the work
in [21]. Fig. 5a shows an ensemble of signals from an
example single footstep. Each profile represents the differ-
ential pressure against time for each of the 88 sensors across
one footstep. In the preprocessing stage, an energy detector
across the 88 sensors of the signals is used to obtain the
beginning of each footstep in order to align the signals to a
common time position.

Fig. 5b shows the global GRF profile for the example
footstep considered here. In this case, as the piezoelectric
sensors provide the differential pressure, the global GRF is
obtained by accumulating each sensor signal across time
(individual GRF, GRFi); then an average of the 88 single
profiles is computed to provide a global GRF (GRFT ).

Formally, si½t� is the output of the piezoelectric sensor i,
i ¼ 1; . . . ; 88, and t ¼ 1; . . . ; Tmax are the time samples. Tmax

was set to a value of 2,000 time samples, large enough for all
footstep signals considered. Then, the individual GRF
(GRFi) and the global GRF (GRFT ) are defined by

GRFi½t� ¼
Xt

�¼0

ðsi½� �Þ; ð1Þ

GRFT ½t� ¼ 1

88

X88

i¼1

ðGRFi½t�Þ: ð2Þ

Apart from the GRFT , two other feature approaches are
studied here. The first comes from a spatial average of the
88 sensors of the mat to produce a single profile. Similar

features were also extracted in [13] and [18]. An example is
shown in Fig. 5b.

save½t� ¼ 1

88

X88

i¼1

ðsi½t�Þ: ð3Þ

The second is a novel approach which uses the upper
and lower contour coming from the maxima and minima of
the sensors for each time sample independently of the
spatial distribution of the sensors. An example is shown in
Fig. 5c. This also gives valuable discriminative information,
as can be seen in the results shown in Section 6.1.

sup½t� ¼ max
88

i¼1
ðsi½t�Þ; ð4Þ

slo½t� ¼ min
88

i¼1
ðsi½t�Þ: ð5Þ

These two signals are then concatenated into one contour
signal scon½t� ¼ ½sup½t�; slo½t��. Equations (2) to (5) lead to a
high dimensionality in the time domain with 2,000 samples
per footstep signal (1,25 seconds). Data dimensionality is
further reduced using principal component analysis (PCA).
Empirically, good development results are obtained when
retaining approximately 96 percent of the original informa-
tion by using the first 120 principal components for each
feature approach.

4.2 Spatial Domain Features (BSpace)

Related works have extracted spatial domain information
from capture systems working with switch sensors and
therefore no pressure information is included. The most
common features are the length and width of the footstep
signals and the length and the relative positions of the stride
footsteps [2], [14], [19].

The spatial domain information extracted here is a novel
approach which considers the distribution of the accumu-
lated pressure along a footstep signal in the spatial domain.
In this case, the individual GRF (GRFi) of each footstep
sensor is integrated along the time axis, obtaining a single
value of the accumulated pressure (APi) for each sensor of
the array for a footstep signal, similar to the work in [22].
The accumulated pressure (APi) is the measure used to
study the distribution of the pressure across the spatial
domain of the signals, and it is defined by
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Fig. 5. Time domain (BTime) feature extraction. (a) Differential pressure directly from the 88 sensors against time. (b) Normalized ground reaction
force profile from (a) as defined in (2), and normalized spatial average of the 88 sensors as defined in (3). (c) Upper and lower contour profiles from
(a) as defined in (4) and (5), respectively.



APi ¼
XTmax

t¼0

ðGRFi½t�Þ: ð6Þ

Fig. 6a represents the 88 values of APi in the X and

Y spatial axes for an example footstep signal. In this case,

we have used an image resolution of one pixel per mm2,

giving the values of APi to the positions with sensors and

zero values to the rest of the image, in this way keeping the

original geometry of the sensors.
It is worth noting that (2) and (6) use the 88 profiles of

GRFi to extract time and spatial information, respectively.

In the first case, the 88 profiles of GRFi are averaged to

produce a global GRF (GRFT ), i.e., pressure information in

the time domain (see Fig. 5b). In the second case, the total

sum of the time values of each GRFi profile give 88 values

of the accumulated pressure (APi), i.e., pressure informa-

tion in the space domain (see Fig. 6a).
The sensor-derived images are then processed to give a

form suitable for subsequent pattern matching, i.e., rotation

and alignment to a common position is needed for all the

spatial images extracted from the database. The spatial

sensor resolution of the array only allows a �60 degrees

rotation for perfect matching, which is too large; therefore,

the images were smoothed using a Gaussian filter (defined

in (7)) in order to obtain a continuous image. Bicubic spline

interpolation was also tried, but better results were

obtained using the Gaussian filter. Fig. 6b shows the

resultant image for the given example after the Gaussian

filter. The best results were obtained using values of x; y ¼
1; . . . ; 100 and � ¼ 14 for the filter:

Gðx; yÞ ¼ 1

2��2
e�

x2þy2

2�2 : ð7Þ

These images are then aligned and rotated based on the

points with maximum pressure, corresponding with the toe

and the heel areas, respectively. The resultant image is

shown in Fig. 6c, which is used to carry out the biometric

classification. For the case of experiments that make use of

the stride footstep, the relative angle between the left and

the right footstep is also considered as a feature.
The above process results in an image with high

dimension (necessary for accurate rotation and alignment).

The next step is then to reduce this dimension prior to the

classification. The resulting images have a dimension of

280� 420 ¼ 117;600 pixels for the single footstep, and this is

reduced using principal component analysis to 140 principal

components (keeping 96 percent of the original information).
Regarding the classifier, in both cases of time and spatial

domain features a support vector machine (SVM) [27] was

adopted with a radial basis function (RBF) as the kernel,
due to very good performance in previous studies in this

area [10], [11].

5 EXPERIMENTAL PROTOCOL

This section describes the experimental protocol followed to

assess footsteps as a biometric. Special attention has been
paid to the partitioning of the data into three sets, namely,

training, validation, and evaluation sets, the first being used
for model training and the second two for testing.

As an assessment protocol of the footstep recognition

evaluation, index files were created to provide a list of the
footstep signals to use in each one of the training and test

datasets following the structure utilized by the international
NIST SRE [28].

The training set is comprised of a set of in-class data used

to train one model per client, and a set of out-class data
from a cohort of impostors which is used in the training

process to obtain better statistical models. PCA transforma-
tion is only carried out with the data from the training set,

and the coefficients of the PCA transformation are then

applied to the data of the validation and evaluation sets to
reduce their dimensionality too. Also, SVM is used in the

training stage to train a model per client.
Validation and evaluation sets are two test sets, the main

difference being that the evaluation set is a balanced set

comprised of the last five footstep signals provided by
persons P1 to P110, while the validation set is an unbalanced

set which contains a larger number of test signals for
subjects included in the training data. The validation set is

used to tune the system, i.e., type of features, number of
PCA components, SVM parameters, etc., in order to obtain

the best results. The evaluation set is comprised of unseen
data, not used in the development of the system.

It is to be stressed that these sets reflect the chronological

order of the data capture. Therefore, the training data is
comprised of the first data provided by each user, and the

data used in the evaluation set is the last collected. This is a
realistic approach reflecting actual usage, in contrast to

previous related works, e.g., [2], [3], [11], [14], which
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Fig. 6. Spatial domain (BSpace) feature extraction. (a) Accumulated pressure (AP) of each sensor across one footstep. (b) Result after smoothing
the image from (a) with a Gaussian filter. (c) Result after alignment and rotation to a common center of signals from (b).



randomly divide the data into training and test sets, or use a
leave-one-out approach.

Results described in Sections 6.1 and 6.2 relate to a
benchmark division of the database which is set to use
40 footstep signals per client to train the models, having
available a group of 40 clients (and therefore 40 models).
Table 2 shows the numbers of data in each set in more detail,
and Fig. 7 shows a diagram of the partitioning of the
database. Each signal from the test sets is matched against all
the trained models (40 models in this case). As can be seen in
the table, the total number of stride signals in the database is
9,990, i.e., 19,980 single (right and left) signals in total.

Sections 6.3 and 6.4 report experimental results in the
form of error rates against quantity of data used to train
each model. In this case, the database is divided into
11 configurations of different numbers of clients and data
per client. The influence of the quantity of data used to train
and test the system is a key factor in any performance
assessment; while common in more established biometric
modes, this aspect is not considered in many cases of
footstep studies, for example, in [3], [9], [12], and [13], due
to limited amounts of data per person in the databases.
Different applications can be simulated using different
quantities of data in the client models. In the present work,
we consider applications such as smart homes and access
control scenarios. In the case of a smart home there would
potentially be a very large quantity of training data
available for a small number of clients, while in security
access scenarios such as a border control, limited training
data would be available, but potentially for a very large
group of clients.

6 EXPERIMENTAL RESULTS

This section describes the experimental results obtained for
the assessment of footsteps as a biometric. Results relate to
the comparative analysis of both BTime and BSpace feature
approaches, their fusion, and some other important aspects
such as the influence of the quantity of data used to train
the models in the performance, the difference between
using single signals (right, left) or stride signals (connected
footsteps), the influence of the sensor density, and a final
evaluation of the recognition system.

Results are presented with DET curves [29], using the
equal error rate as the performance measure for verifica-
tion applications. Also, CMC curves are used in Sec-
tion 6.2 to show the performance for the case of an
identification scenario.

6.1 Comparative Analysis of BTime and BSpace
Approaches

This section presents the comparative analysis of the two
BTime and BSpace feature approaches. Fig. 8a shows the
DET curve profiles for the BTime approach, which is
described in Section 4.1. This is shown for the three features
considered, i.e., the global GRF, the spatial average, and the
contour. Also, a fourth plot in the figure shows the result of
the fusion at the feature level of the three time features,
which is carried out by concatenating the features of the
single approaches after PCA. These results are generated for
stride footsteps, which are comprised of concatenated right
and left footstep signals. The benchmark division of the
database shown in Table 2 is considered here.

As can be seen, very similar results are obtained for the
GRF and spatial average features with EERs of 15.5 and
15.8 percent, respectively. The contour feature approach
provides a better result with an EER of 12.7 percent. In any
case, the fusion outperforms the three single approaches,
obtaining an EER of 10.5 percent.

In a similar way, Fig. 8b shows the DET curve result
obtained for the case of the spatial domain approach
(BSpace), described in Section 4.2. An EER of 10.6 percent
is achieved in this case, which is surprisingly very similar to
the result obtained for the fusion of the three time domain
features, which can also be seen in Fig. 8b.

This is a directly comparative assessment of the time
and spatial information contained in the footstep signals, as
the same protocol has been used to carry out the
experiments. This implies that the time and spatial
information extracted from the footstep signals have
similar discriminatory properties.

A further analysis has been carried out to study how
statistically relevant are BTime and BSpace feature ap-
proaches. First, the Pearson correlation coefficient of the
matching scores of both approaches was calculated, obtain-
ing 0.42 (where 1 would mean they are completely
correlated and 0 completely uncorrelated). Second, a t-test
has been carried out at the score level to study the statistical
difference between the two approaches. As a result, we
obtain p < 0:001, which means that scores from both

VERA-RODRIGUEZ ET AL.: COMPARATIVE ANALYSIS AND FUSION OF SPATIOTEMPORAL INFORMATION FOR FOOTSTEP RECOGNITION 829

Fig. 7. Number of footstep signals against number of people in the
database. Diagram of the database with the different divisions of
training, validation, and evaluation sets for the benchmark division.
Numbers are described in Table 2.

TABLE 2
Database Configuration for the Case of

40 Models and 40 Reference Signals per Model



approaches are statistically different with a 95 percent
significance level. Also, the scatter plot for the scores of
BTime and BSpace is shown in Fig. 8c. Therefore, we can
conclude that the two classes of features are statistically
relevant, and fusing the two systems can lead to a
performance improvement, as reported in [30].

6.2 Fusion of BTime and BSpace

This section is focused on the fusion of the time and spatial
information of the footstep signals. In the case considered
here, the fusion of BTime and BSpace approaches has been
carried out at the feature and score levels. For simplicity,
the same weights were applied to the two cases.

In the feature-level fusion, the feature sets originating
from the different algorithms described in Sections 4.1 and
4.2 are fused into a single feature vector. PCA is used in this
case to reduce the dimensionality of the feature vector and
then it is introduced to an SVM classifier to provide the new
matching scores.

In the score-level fusion, the scores originating from the
BTime and BSpace approaches are combined to generate a
new score. As stated in [31], fusion at the score level is the
most common approach due to the ease in accessing and
combining the scores generated by different classifiers. In

this paper, different combination rules such as the sum,
product, max, and min rules have been compared following
previous works [32]. These fixed combination rules are
simple, computationally fast, and provide good perfor-
mance compared to other categories such as classifier-
based, as stated in [31] and [33].

Fig. 9a shows the DET curves obtained for the cases of the
fusion carried out at the feature-level and at the score-level
using the sum, product, max, and min rules. As can be seen,
the best performance for the score-level fusion corresponds
to the case of the product combination rule with an EER of
7.2 percent. This also gives a slightly better performance that
the fusion at the feature-level (7.5 percent EER); therefore
results achieved in the following sections relate to the score-
level fusion using a product combination rule.

Fig. 9b shows a comparison of performance for the case
of the stride footsteps for BTime, BSpace, and their fusion at
the score-level. Results improve for the fusion at an absolute
average of 3.3 percent of EER, which is very significant.

Fig. 9c shows the corresponding CMC curves which
report the expected performance in an identification
application. As can be seen, results for BTime and BSpace
are similar, obtaining rank 1 of 0.58 and 0.62, respectively,
and rank 5 of 0.84 in both cases. When the fusion at the
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Fig. 9. (a) Comparison of performance for the four combination rules used in the score-level fusion and the feature-level fusion. (b) Comparison of
performance of BTime, BSpace, and their fusion at the score-level. (c) Comparison of CMC curves for an identification application.

Fig. 8. (a) DET curves for BTime approaches and their fusion. (b) Comparison of performance of BTime and BSpace approaches. (c) Scatter plots of
scores for BTime and BSpace.



score level is applied, the results improve significantly,
achieving a rank 1 of 0.75 and a rank 5 of 0.89.

6.3 Other Important Aspects

This section is focused on some other important aspects
which are not common in previous studies in the field of
footsteps as a biometric. The factors studied here are the
influence of the quantity of data used to train the models in
the performance, the difference between using single
signals (right, left) or stride signals (connected footsteps),
and the influence of the sensor density in the performance.

6.3.1 Quantity of Data

As described previously, the influence of the quantity of
data used to train and test the system is key in any
performance assessment, but this aspect is not been
considered in many cases of footsteps studies. A character-
istic of the database considered here is that it contains a
large amount of data for a small subset of subjects (>200
signals per subject, for 15 subjects), and a smaller quantity
of data for a larger group of subjects (>20 signals per
subject, for 54 subjects). Therefore, many experiments can
be carried out using different divisions of the database in
terms of quantity of data used to train the models varying
also the number of clients. This could serve to simulate
some potential applications for footsteps such as smart
homes or security access.

In this sense, the database was divided into 11 different
configurations. Table 3 shows the relation between the
number of signals used to train the client models and
the number of clients available in each case. Note that there
are 75 client models with 1 signal as training because at least
10 signals are required for the validation set and at least 5 for
the evaluation set. Users 76 to 127 provided a smaller amount
of data which was used as data from impostors.

Fig. 10a shows a comparison of performance for the case
of the stride footsteps for BTime, BSpace, and their fusion at

the score-level. The figure shows the recognition perfor-
mance in terms of EER against the different quantities of
stride footstep signals used to train the models. The top
abscissa axis shows the number of client models trained.

All three plots have a similar overall shape with 1) an

initial steep fall from approximately 35 percent EER to

15 percent EER for the cases of BTime and BSpace and to

11 percent EER for their fusion when using 1 to 10 footsteps

for training, 2) a smooth knee curve when increasing the

number of signals used in the models from 20 to 80 where

the error rates change less rapidly from 13 to 8.5 percent EER

for the cases of BTime and BSpace, and from 9 to 5.5 percent

EER for the case of the fusion, and 3) relatively flat profiles

where error rates are around 4.5-5 percent EER for BTime

and BSpace and around 2.5 percent EER for the case of the

fusion when using 500 signals to train the reference models.

EER results obtained in the left part of the figure could serve

to estimate the performance of footstep recognition in a

security access application obtaining results in the range of

5 to 10 percent EER. On the other hand, results in the right

part of the figure could serve to estimate the performance of

footstep recognition in a smart home application obtaining

results in the range of 2.5 to 4 percent EER.
A very recent publication in the field of footstep

recognition by Qian et al. [3] achieves recognition results
of around 7.5 percent of error rate for the case of using
11 clients and 362 stride footsteps to train each client model.
This would be more or less comparable with our case when
using nine clients and 300 stride signals for training, in
which we achieve 3.5 percent EER. A reason for this better
performance in our case could be because we use holistic
feature approaches for BTime and BSpace and then we
carry out their fusion; on the other hand, they use a
geometric approach, selecting a few key points of the center
of pressure, using their spatial coordinates and the pressure
value, therefore not considering a large amount of informa-
tion contained in the signals.

6.3.2 Single versus Stride

The study of single versus stride (consecutive footsteps)

footsteps has been carried out in previous works such as [2],

[4], [10], always obtaining better results for stride compared
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TABLE 3
Relation between Number of Signals in the Client Models and

Number of Clients Available in Each Case

Fig. 10. (a) Comparison of BTime, BSpace, and their fusion for stride footsteps with EER versus signals used per client model. (b) Comparison
of score-level fusion of BTime and BSpace approaches for single and stride footsteps. (c) Comparison of EER against three sensor densities
for stride footstep for BTime, BSpace, and their fusion. Baseline density (650 sensors per m2), density 1 (430 sensors per m2), and density 2
(220 sensors per m2).



to single footsteps. In our case, we can only compare the
performance between single and two consecutive footsteps.

Fig. 10b shows the results obtained for the case of the
score-level fusion of BTime and BSpace for the single (right
and left) and the stride footsteps. Plots follow the same
trends, but with a significant improvement of the
performance for the case of the stride footsteps with an
average of 2.5 percent EER compared to the single
footsteps. As in related works, better recognition perfor-
mance could be achieved with the concatenation of a
sequence of footstep signals.

6.3.3 Sensor Density

This section studies the influence of the sensor density and
how it affects the performance, as this has not been
considered in related works. It is obvious that if the sensor
density is higher, more information can be extracted, but up
to a spatial sampling limit.

Fig. 11 shows a diagram of the geometry and density of
the piezoelectric sensors, for an example 9 UK size foot
(27.5 cm long). A standard 88 sensor density (�650 sensors
per m2) plus two subsampling conditions are considered.
The subsampling process is illustrated in the figure with the
geometry of the sensors used for Densities 1 and 2.

Density 1 reduces the original sensor density by a
34 percent, i.e., from 88 to 58 sensors (�430 sensors per
m2), and Density 2 reduces the original sensor density by a
66 percent, i.e., from 88 to 30 sensors (�220 sensors per m2).
Density 2 was the optimal sampling distribution, having the
sensors in a hexagonal array. In order to have another
sampling distribution with a higher sensor density, sensors
not used in Density 2 were used to form Density 1.

Fig. 10c shows EER results for the cases of BTime,
BSpace, and their fusion for the three densities considered.
Results relate to the benchmark division of the database
shown in Table 2. As can be seen, the reduction of the
sensor density significantly affects the recognition perfor-
mance. Also, the figure shows a much worse result for the
BSpace compared to the BTime approach for the cases of
Densities 1 and 2. This due to the fact that BSpace features
depend more directly on the sensor density.

The fusion of both feature approaches provides the best
results in any case. The trends of EER are similar to the ones
obtained for the case of BTime, and are much better than for
the case of BSpace. It can be concluded that at least
650 sensors per m2 are required to give the good

performance presented in this paper. Given the trends of
profiles in Fig. 10c, a higher density might provide even
better results.

6.4 Evaluation of the System

This section describes the experimental work using the
evaluation test set. This evaluation is carried out at this
stage for the best working configuration obtained in the
validation set. Fig. 12 shows the results for the evaluation
test set, which is comprised of the last five signals provided
by 110 people. This data was reserved for this trial
assessment and has not been used in any form previously.

As could be expected, the performance obtained for the
evaluation is worse compared to the validation set. Results
of 12.1 percent EER are obtained for the case of 10 signals
per model (60 models), which improves to 4 percent EER
for the case of 500 signals per model (five client models). A
reason for this difference in the performance could be that
the signals comprising the evaluation set are the last signals
provided by the users and therefore more likely to be more
different from the data used in the reference models.

Performance results obtained in the left part of the
figure, on the order of 10-12 percent EER, are to be expected
in applications such as security access. In applications such
as smart homes, better performance results on the order of
3-6 percent EER can be expected, which correspond to the
right part of the profiles in the figure.

As an overview of the results achieved, Table 4 shows a
comparison of performance in terms of EER for the
experiments described in this paper. Three working points
have been chosen from profiles in Figs. 10a, 10b, and 12;
these are: 40, 100, and 500 signals used to train the client
models for 40, 20, and 5 clients, respectively. The table
shows EERs for the cases of single and stride footsteps, and
for the validation set (BTime, BSpace, and Score-Level
fusion) and evaluation set (only for the case of the fusion).

7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This paper studies footstep signals as a biometric based
on the largest footstep database to date, with more than
120 people and almost 20,000 signals.
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Fig. 11. Density of the array of piezoelectric sensors. Selected sensors
for Densities 1 and 2. Example of a 9 UK size foot (27.5 cm long).

Fig. 12. Evaluation for the score-level fusion of BTime and BSpace and
stride footsteps.



The main contribution of the present work is the
assessment of footsteps in time, in space, and in a
combination of the two. This is in contrast with the great
majority of the related works, which either use time or
spatial information from the signals due mainly to the
limitations of the capture systems. Interestingly, the perfor-
mance for the two domains proves to be very similar, with
equal error rates in the range of 5-15 percent for each domain,
depending on the experimental setup, and in the range of
2.5-10 percent for their fusion. To our knowledge, these are
the best results achieved for footstep recognition to date.

The experimental protocol is designed to study the
influence of the quantity of data used to train the reference
models, with a steep fall to 11 percent EER when using 1 to
10 signals, then a smooth knee curve from 9 to 6 percent
EER when using 20 to 80 signals, and relatively flat profiles
thereafter for the case of the fusion of BTime and BSpace
and the stride footstep. This serves to predict the perfor-
mance for footsteps in applications such as smart homes or
border control scenarios for the first time.

Another interesting finding is an average relative
improvement of 25 percent EER achieved for stride foot-
steps compared to single (right or left) footsteps, which
suggests that performance could be further improved with
the concatenation of a sequence of footstep signals.

Also, this paper studies the influence of the sensor
density in the performance, showing a significant increment
of the EER when the sensor density is reduced. This is more
accentuated for the case of BSpace (average of 2.8 times
greater). Note 650 sensors per m2 was the maximum
considered here due to physical limitations; results suggest
that higher density might improve error rates.

7.2 Future Work

As footsteps are a relatively new biometric, there is large
amount of research that can be carried out in this field.

Section 6.2 describes the fusion of the time and spatial
domain information of the footstep signals. Significant
improvements of 3 percent EER are reported with fusion at
the feature and score levels. An extension to the work
presented would be to combine the spatiotemporal infor-
mation of the signals from the sensor level.

Experiments reported in this work relate to the situation
where the training data and the test data are in logical time
sequence to reflect real applications, i.e., all the model data
are recorded before the test data. Even better results could
be obtained for the case of randomizing the data used in the

training and test sets, like some previous works such as [2],

[3], [14]. This would produce artificially good results, but it

would serve to analyze the effect of the time gap between

training and test data.
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