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ABSTRACT
This paper focuses on automatic facial regions extraction for
forensic applications. Forensic examiners compare different fa-
cial areas of face images obtained from both uncontrolled and
controlled environments taken from the suspect. In this work,
we study and compare the discriminative capabilities of 15 fa-
cial regions considered in forensic practice such as full face,
nose, eye, eyebrow, mouth, etc. This study is useful because
it can statistically support the current practice of forensic fa-
cial comparison. It is also of interest to biometrics because a
more robust general-purpose face recognition system can be
built by fusing the similarity scores obtained from the com-
parison of different individual parts of the face. To analyse
the discrimination power of each facial region, we have ran-
domly defined three population subsets of 200 European sub-
jects (male, female and mixed) from MORPH database. First
facial landmarks are automatically located, checked and cor-
rected and then 15 forensic facial regions are extracted and con-
sidered for the study. In all cases, the performance of the full
face (faceISOV region) is higher than the one achieved for the
rest of facial regions. It is very interesting to note that the nose
region has a very significant discrimination efficiency by itself
and similar to the full face performance.

Index Terms— Forensic, biometrics, face recognition, fa-
cial regions, forensic casework.

1. INTRODUCTION
Automatic face recognition has been extensively researched
over the past two decades. This growth is due to its easy acqui-
sition and its important role in a growing number of application
domains, including access control, video surveillance, and its
wide use in government issued identity documents (e.g., pass-
port and driving’s license) [1].

An area where these kinds of systems have obtained an in-
creased emphasis is the forensic field [2, 3]. Forensic science
analyses data collected by law enforcement agencies in order to
prove or disapprove the guilt of a suspect with high confidence
under the legal system.

While DNA and fingerprint forensic identification are two
of the most reliable and available identification methods in
forensic science, automatic face recognition technology needs
to improve the set of available tools to determine a person’s

identity, particularly from video surveillance imagery. Such
progress for forensic face recognition is one of the goals of the
FBI’s Next Generation Identification program [4].

Automatic face recognition systems are generally designed
to match images of full faces. However, in practise, forensic
examiners focuses carry out a manual inspection of the face im-
ages, focussing their attention not only on full face but also on
individual traits. They carry out an exhaustive morphological
comparison, analysing the intra-variability of a face, trait by
trait on nose, mouth, eyebrows, etc., even examining soft traits
such as marks, moles, wrinkles, etc. On the other hand, there
are several studies [5, 6, 7, 8] based on realistic scenarios trying
to understand the effect of the different variability factors in this
field.

As Jain et al. decribe as future work in [9, 2, 10], facial
regions-based system for matching and retrieval would be of
great value to forensic investigators.

There are some previous works where region-based face
recognition is studied [11, 12, 13, 14, 15, 16] but these papers
do not focus their attention in the regions usualy considered by
forensic experts. In this work, we have extracted facial compo-
nents (called from now facial regions) following forensic pro-
tocols from law enforcement agencies, allowing us to study the
discriminative power of different facial regions individually. In
particular we address in this paper the problem of finding the
most discriminative areas of the face for recognition.

Understanding the discrimination power of different facial
regions on a wide population has some remarkable benefits, for
example: i) allowing investigators to work only with particu-
lar regions of the face, ii) preventing that incomplete, noisy,
and missing regions degrade the recognition accuracy. Further,
a better understanding of facial regions-based face recognition
should facilitate the study of individuality models.

In summary, the main contribution of the paper is an exper-
imental study of the discriminative power of different forensic
facial regions on a wide population using forensic protocols.
Additionally, we propose a novel framework for facial regions
extraction useful for controlled and uncontrolled scenarios.

The rest of the paper is organized as follows. In Section 2,
we provide an overview of the automatic facial region extraction
procedure. Section 3 presents the analysis of the extracted facial
regions defining the database used, the experimental protocol
followed, the feature extraction and classification used and the
experimental results achieved. We conclude in Section 4 with a
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Figure 1: Experimental framework.

discussion and summary of our work.

2. FACIAL REGIONS EXTRACTION
This section describes the experimental framework developed
to extract the different forensic facial regions analysed in this
work.

The traditional inspection procedure of the law enforce-
ment agencies carried out by forensic examiners is mainly based
on manual and individual skills of the human examiners using
some general image processing tools. Automatic approaches of
image processing could help the examiners to reduce the human
subjective decisions, reaching higher precisions. In this sense,
we have developed a useful tool able to extract different facial
regions as summarized in Fig. 1.

The presented experimental framework has two different
configurations in order to find the facial landmarks for extrac-
tion of the facial regions: automatic and manual . Automatic
configuration uses a commercial system 1 that provides 65 fa-
cial points of which only 13 are used. These 13 facial landmarks
plus a new point that indicate the top of the head (defined by us)
(see Fig. 2) are used as inputs to a facial landmarks error detec-
tor developed by us based on distances, angles and symmetries
between these points. This system allows us to know which
facial landmark is correctly located and which of them needs
to be corrected. On the other hand, the location of these facial
landmarks could be done manually by a forensic examiner.

After a correct facial landmark location, faces are normal-
ized based on the ISO standard [17] with an Interpupillary Pixel
Distance (IPD) of 75 pixels. Therefore, facial regions can be
extracted with a standard size for all faces.

In our approach we have implement two different facial re-
gion extractors: i) based on human facial proportions, and ii)
based on facial landmarks. The first one extracts the facial area
of interest of the face (eyebrows, eyes, nose, mouth, etc.) us-
ing just the two eyes coordinates, following simple facial pro-
portions rule [18, 19]. The mentioned extractor would be of
interest in challenging uncontrolled scenarios where landmarks

1Luxand, Inc. http://www.luxand.com.

are very difficul to be extracted automatically. On the other
hand, the second extractor, based on facial landmarks correctly
located, allows to extract the facial regions with high precision.

The experimental framework implemented extracts of 15
different facial regions as can be seen in Fig. 2. The election of
these 15 regions is based on protocols from Spanish Guardia
Civil [20] and NFI [21], two of the most important national
forensic science laboratories in Spain and Netherlands, respec-
tively.

3. FACIAL REGIONS ANALYSIS
This section decribes how facial regions extracted from a face
are analysed in order to evaluate their discriminative power.
Firstly, the database and the experimental protocol adopted for
this work are presented. Then, the feature extraction and clas-
sification will be described and finally, the experimental results
will be detailed.

3.1. Database

The experiments are carried out on a subset of the MORPH
Non-Commercial Release database [22]. MORPH contains
55.000 frontal face images from more than 13.000 subjects, ac-
quired from 2003 to late 2007. The distribution of ages ranges
from 16 to 77 with an average age of 33. The average number of
images per individual is 4 and the average time between pictures
is 164 days, with the minimum being 1 day and the maximum
being 1.681 days. The MORPH database is divided in 5 subsets
named: i) African, ii) European, iii) Asian, iv) Hispanic and v)
Other.

The subset “European” comprises 2.704 subjects (2.070
males plus 634 females) and has been selected for these exper-
iments. Fig. 2 shows an example in our dataset together with
their extracted regions.

3.2. Experimental Protocol

For the experimental work of this paper we discarded those sub-
jects with less than three images and chose three images per
subject with the smallest gap between acquisitions in order to
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Figure 2: Facial regions extraction.

reduce the time lapse effect.
Then using this selection, three population sets were ran-

domly chosen in order to analyse the discrimination power of
each facial region on different populations: i) 200female, ii)
200male, and iii) 200mix (100 male+100 female).

Each population subset of 200 subjects with 3 face images
each is then divided into: i) a training set comprising the first
sample (enrolment template); and ii) an evaluation set com-
prised of the other two images available for each subject.

3.3. Feature Extraction and Classification

Regarding feature extraction and classification, a system based
on PCA-SVM was adopted to compute the discrimination
power between different facial regions. Different noise masks
were applied to each facial region (Fig 2) (e.g. 75× 101 (width
× height) for nose region). PCA was applied to each facial re-
gion over the training set retaining 96% of variance. This leads
to a system where the original image space (e.g. of 7.575 di-
mensions for nose region) is reduced to 200 dimensions. Sim-
ilarity scores are computed in this PCA vector space using a
SVM classifier with linear kernel.

3.4. Experimental Results

This section describes the experimental analysis of individual
features of each facial region and their discrimination power
(represented by EER) over the different 3 population datasets.
Results are shown using ROC curves with EERs (in %).

The discrimination power of each defined forensic facial
region for the three studied population datasets is presented in
Fig. 3. As can be seen, doing a global analysis, faceISOV region
reaches the highest performance compared to the other facial
regions, followed by the nose and middle faces regions. It is
worth highlighting that the faceISOV and middle faces include
other facial regions considered. However, the nose region does
not, hence it is important to remark that the nose region has a
very high and important discrimination power with respect to
the other regions of the face. Ranking the remaining facial parts
regarding their discrimination power, the eye regions come next,

followed by eyebrows, mouth and chin. The worst results were
obtained for the chin, which could be explained due to difficulty
to locate the corresponding landmark. As it was expected, ears
achieved worse results due to the common occlusion by hair and
the pose. It is important to note that mouth region achieves poor
performance, it could be due to variability having a not neutral
expression: open, closed, smiling, etc.

As can be seen in Fig. 3 (middle and bottom), faceISOV for
male and female populations has more or less the same perfor-
mance, but in general discriminative results for the male popu-
lation were better than female, due to less variability.

4. CONCLUSIONS
In the present work, an experimental framework for the extrac-
tion of different facial regions of a face has been presented and
used to understand their discrimination power. The discrim-
ination efficiency of each facial region has been studied con-
sidering three different populations obtained from the MORPH
database. In all cases, the performance of the full face named
faceISOV region is higher than the one achieved by the rest of
facial regions. In a real forensic scenario, partial faces are con-
sidered very often for recognition due to occlusions or other
factors, hence this individualized study is very useful in order
to give some insight into the expected degradation when work-
ing with partial faces. Furthermore, the nose region has a very
significant discrimination efficiency by itself and similar to full
face performance. There are notable differences between male
and female performances on different facial regions and in gen-
eral men achieve better discriminative reults for their facial re-
gions compared to women, most likely due to less variability of
appearance. This work highlights the benefits of adequate anal-
ysis of facial regions from a face in order to better understand
the facial intra-variability.
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Figure 3: ROC curves showing verification performance of dif-
ferent facial regions (highlighting the best three regions) ob-
tained for the three population sets: 200mix (top), 200female
(middle), and 200male (bottom). See one example of the differ-
ent regions in Fig. 2.4


