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Abstract

We provide an introduction to Multiple Classifier Systems (MCS) includ-
ing basic nomenclature and describing key elements: classifier dependencies,
type of classifier outputs, aggregation procedures, architecture, and types of
methods. This introduction complements other existing overviews of MCS,
as here we also review the most prevalent theoretical framework for MCS
and discuss theoretical developments related to MCS.

The introduction to MCS is then followed by a review of the application
of MCS to the particular field of multimodal biometric person authentication
in the last 25 years, as a prototypical area in which MCS has resulted in im-
portant achievements. This review includes general descriptions of successful
MCS methods and architectures in order to facilitate the export of them to
other information fusion problems.

Based on the theory and framework introduced here, in the companion
paper we then develop in more technical detail recent trends and develop-
ments in MCS from multimodal biometrics that incorporate context infor-
mation in an adaptive way. These new MCS architectures exploit input
quality measures and pattern-specific particularities that move apart from
general population statistics, resulting in robust multimodal biometric sys-
tems. Similarly as in the present paper, methods in the companion paper
are introduced in a general way so they can be applied to other information
fusion problems as well. Finally, also in the companion paper, we discuss
open challenges in biometrics and the role of MCS to advance them.
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1. Introduction

The basic aim of pattern recognition is to devise automatic procedures
that maximize certain criteria for the recognition problem at hand, usually
related to the recognition performance. This is normally achieved by compar-
ing different existing pattern recognition algorithms on the specific problem
studied, and selecting the best of them. Worth noting, by observing the
errors misclassified by the different approaches, one can observe that some
recognition errors committed by the best approach can be well resolved by
the inferior methods. These observations motivated a big interest in combin-
ing classifiers in the 90’s [1], which was followed by very active research since
then. This is exemplified by the successful series of Workshops on Multiple
Classifier Systems (MCS), conducted yearly since 2000 [2, 3].

This multiple classifier approach can be found with different names in
the literature [4]: classifier combination, classifier fusion, mixture of experts,
committees of neural networks, consensus aggregation, expert conciliation,
voting pool of classifiers, dynamic classifier selection, composite classifier
design, classifier ensembles, divide-and-conquer classifiers, etc.

In addition to important theoretical advances, the above mentioned re-
search in multiple classifier systems has resulted in highly successful practical
developments in almost any field in which pattern classifiers are used, e.g.,
analytics of data streams [5], astronomy [6], biometrics person recognition
[7], computer vision and medical image analysis [8], decision making [9],
document analysis [10], hybrid systems [11], machine learning [12], neural
information processing [13], and many others. One prototypical example of
a big practical MCS success is the Viola-Jones cascade classifier [14], one of
the most cited and widely used approaches in computer vision.

In the previous paragraph and related literature [4], the reader can find
excellent surveys of MCS methods and algorithms. Out of those previous gen-
eral references, the most related publications are the excellent MCS overview
by Polikar [9], which is still a valuable reference after more than 10 years,
and the quite recent overview of MCS applied to biometrics by Lumini and
Nanni [15]. We complement the first overview by Polikar being more general,
up to date, and more focused into fundamentals. On the other hand, in [9]
one can find introductory descriptions of specific MCS algorithms like the
ones only mentioned here in Table 2. With regard to the recent overview
by Lumini and Nanni [15], here we are more comprehensive in our review of
methods for biometrics, including the basics of the most prevalent theory of
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MCS applied to biometrics. We also develop recent trends and developments
not discussed by Lumini and Nanni, including adaptive architectures and
practical algorithms implementing the discussed new trends.

In order to be as self-contained as possible while avoiding overlap with
related publications, this paper is divided into two Parts, each of them with
slightly different intended audience.

In the present paper, Part 1, we first provide a brief introduction to
MCS outlining basic nomenclature, architecture, and key elements, with a
focus into the fundamentals of MCS. We refer the reader to the references
in previous paragraphs for descriptions of established MCS methods and
algorithms.

After the brief introduction to MCS, we also review here in Part 1 the
application of MCS to the particular field of multimodal biometric person
authentication in the last 25 years or so, as a prototypical area in which
MCS has resulted in important achievements. We review MCS in multi-
modal biometrics with general descriptions of main MCS elements, methods,
and algorithms; facilitating the export of experiences and methods to other
information fusion problems.

The companion paper, Part 2 of this series of two papers, is intended
for researchers knowledgeable in MCS interested in recent developments in
context-based information fusion [16] coming from the biometrics research
community, or newcomers to MCS that have first addressed Part 1.

The companion paper ends with a discussion of open challenges in biomet-
rics that can be addressed and advanced using MCS. The challenges exposed
largely follow the excellent survey and outlook of the field of biometric person
recognition by Jain et al. [17], which we complement with our personal view,
and augment with the way MCS developments can advance key challenges
in biometrics.

Biometrics person recognition shares many issues and challenges with
other pattern recognition applications like video surveillance [18], speech
technologies [19], human-computer interaction [20], data analytics applica-
tions [21], behavioural modelling [22], or recommender systems [23]. By
keeping our discussion on MCS methods in biometrics as general as possible,
we hope to provide some hints for potential research and advancements in
other pattern recognition and information fusion areas as well.

The present paper is organized as follows. Section 2 provides an intro-
duction to Multiple Classifier Systems (MCS), including: nomenclature, ar-
chitecture, summary of classical techniques, and a flexible theoretical frame-
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work. Section 3 overviews the application of MCS techniques to biometrics
in the last 25 years, with emphasis on the most popular architecture, namely:
post-classification fusion; which is further discussed separately for combina-
tion and classification approaches. We complete Section 3 with a discussion
of score normalization, and its application to MCS. The paper ends in Section
4 with some concluding remarks.

2. Multiple Classifier Systems (MCS)

Multiple classifier approaches can be categorized depending on: assump-
tion about classifier dependencies, type of classifier outputs, aggregation pro-
cedure, and architecture.

Classifier dependencies. In general, we may have different classifier outputs
because of [24]: different feature sets, different training sets, different classifi-
cation methods, different parameters in the classification method, or different
training sessions. All these reasons result in a set of classifiers whose outputs
may be combined with the hope of improving the overall classification accu-
racy. Classifier combination is specially useful if the individual classifiers are
largely diverse [25]. If this has not been guaranteed by the use of different
training sets, resampling techniques like rotation or bootstrap may be used to
artificially create such differences. Examples of classifier combination based
on resampling strategies are the well known stacking [26], bagging [27], and
boosting [28].

In the case of multimodal biometric authentication, the independence
between classifiers (one for each modality) is normally assumed.

Type of classifier outputs. The outputs of the different classifiers can be clas-
sified into three levels [29]: 1) abstract, 2) rank, and 3) measurement (or
confidence). At abstract level, each classifier only outputs a class label. At
rank level, each classifier outputs a ranked list of classes, with the class ranked
first being the first choice. At measurement level, each classifier outputs a
numerical value indicating the belief or probability that the pattern belongs
to a given class.

Aggregation procedures. Aggregation procedures can be first classified accord-
ing to trainability and adaptivity. Some combiners do not require training
while others are trainable. The trained combiners may lead to better perfor-
mance at the cost of additional training data and additional training. Some
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Figure 1: Architectures for multiple classifier combination: (a) hierarchical, (b) serial, (c)
parallel.

combiners are adaptive in the sense of weighting the contribution of each
expert depending on the input pattern. Conversely, nonadaptive combiners
consider all input patterns in the same way. Adaptive schemes can exploit
the detailed error characteristics of the individual classifiers under different
input patterns. Examples of adaptive combination strategies include adap-
tive weighting [30], mixture of local experts (MLE) [31], and hierarchical
MLE [32].

Architecture. The schemes for multiple classifier combination can also be
grouped according to their architecture into three main categories [24]: 1)
hierarchical (or tree-like), 2) cascading (or serial), and 3) parallel. A graphic
representation of the three categories is given in Fig. 1.

In hierarchical classifier combination schemes, the different classifiers are
combined into a tree-like structure. This is the more flexible architecture and
enables to exploit the different discriminative power that can be embedded
in different groups of features.

In the cascade architecture the classifiers are invoked in sequence. Some
of them may only be used if certain conditions occur in the outputs of the
classifiers invoked first. This architecture enables to improve the efficiency
when cheap but inaccurate classifiers are followed by expensive but accurate
classifiers.

In the parallel architecture all classifiers are invoked independently and
their outputs are combined. Most methods in the literature belong to this
category, which can be further divided into two classes: 1) selection, and 2)
fusion. In classifier selection, the different individual systems are considered
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Table 1: Strategies in multiple classifier systems. Adapted from [34].

Method Architecture Level Train. Adapt. Comments

Class set reduction Serial/Parallel Rank/Conf. Yes No Efficient
Voting, AND/OR Parallel Abstract No No Assumes independency
Associative switch Parallel Abstract Yes Yes Explores local expertise

Borda count Parallel Rank Yes No Converts ranks to confidences
Logistic regression Parallel Rank/Conf. Yes No Converts ranks to confidences
Dempster-Shafer Parallel Rank/Conf. Yes No Fuses non-probabilistic scores
Prod, min, max Parallel Confidence No No Assumes independency

Sum, median Parallel Confidence No No Assumes independency; robust
Gen. Ensemble Parallel Confidence Yes No Considers error correlations

Stacking Parallel Confidence Yes No Exploits scarcity in data
Fuzzy Integrals Parallel Confidence Yes No Fuses non-probabilistic scores

Bagging Parallel Confidence Yes No Needs many classifiers
Random subspace Parallel Confidence Yes No Needs many classifiers

Adaptive weighting Parallel Confidence Yes Yes Explores local expertise
MLE Parallel Confidence Yes Yes Explores local expertise

Boosting Parallel/Hier. Abstract Yes No Needs many classifiers
Neural tree Hierarchical Confidence Yes No Handles many classes

Hierarchical MLE Hierarchical Confidence Yes Yes Explores local expertise

“experts” in local regions of the feature space. The combination gives then
more importance to the classifier closest to the input pattern in terms of area
of expertise [31, 33]. On the other hand, classifier fusion assumes that all the
classifiers are trained and their expertise combined over the whole feature
space [29].

Some well-known combination strategies in multiple classifier systems are
compared in Table 1 based on the previous properties.

2.1. Parallel classifier combination

Multiple classifier outputs are usually made comparable by mapping them
to the [0, 1] interval. This score normalization step will be detailed in the
case of multimodal authentication in Sect. 3.2.3. For some classifiers, these
normalized output scores can be considered a posteriori probabilities for the
classes. Assuming further restrictions, e.g., that the individual classifiers use
mutually independent subsets of features (which is realistic in the case of
multimodal biometrics), fusion can be reduced to simple operators such as
product or average. Kittler et al. [1] followed this approach in a probabilis-
tic Bayesian framework and provided an example of multimodal biometric
authentication fusing speech, frontal and profile images modalities. Con-
sidering M classifiers, C classes, and a given pattern Z that generates the
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feature vector Bj for classifier j, the classifiers are considered to give the
a posteriori probability for each class ωc, c = 1, . . . , C: P (ωc|Bj). Several
ways to implement the fusion of the classifiers are then obtained based on
the Bayes theorem and certain hypothesis:

Product Rule. Assign Z → ωc if

P (1−M)(ωc)
M∏
j=1

P (ωc|Bj) =
C

max
r=1

[
P (1−M)(ωr)

M∏
j=1

P (ωr|Bj)

]
. (1)

Sum Rule. Assign Z → ωc if

(1−M)P (ωc) +
M∑
j=1

P (ωc|Bj) =
C

max
r=1

[
(1−M)P (ωr) +

M∑
j=1

P (ωr|Bj)

]
.

(2)

Max Rule. Assign Z → ωc if

M
max
j=1

P (ωc|Bj) =
C

max
r=1

M
max
j=1

P (ωr|Bj). (3)

Min Rule. Assign Z → ωc if

M

min
j=1

P (ωc|Bj) =
C

max
r=1

M

min
j=1

P (ωr|Bj). (4)

Median Rule. Assign Z → ωc if

M

med
j=1

P (ωc|Bj) =
C

max
r=1

M

med
j=1

P (ωr|Bj). (5)

Majority Vote Rule. In this case the combination is not at score level
but at decision level. The a posteriori probabilities are thresholded to
produce

∆rj =

{
1 if P (ωr|Bj) =

C
max
c=1

P (ωc|Bj)

0 otherwise
. (6)
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The majority vote rule then assigns Z → ωc if

M∑
j=1

∆cj =
C

max
r=1

M∑
j=1

∆rj. (7)

The product rule is obtained from the assumption of statistical indepen-
dence of the different representations Bj with j = 1, . . . ,M . The sum rule
is obtained further assuming that the a posteriori probabilities computed by
the classifiers do not deviate much from the a priori probabilities, which is
the case in a noisy scenario. The remaining rules are obtained by approximat-
ing or bounding the a posteriori probabilities. The sum rule outperformed
the remainder in the experimental comparison. This was explained by a the-
oretical analysis of its robustness to the estimation errors of P (c|Bj) made by
the individual classifiers. Subsequent works have also reported comparative
studies between these simple fusion rules [35, 36, 37].

Another paradigm for parallel classifier fusion is based on considering the
combination stage as a second-level pattern recognition problem [4]. In this
case the outputs from the different classifiers are considered as a new feature
vector which is the input to a second-level classifier. The methods specially
developed for multiple classifier combination (some of them summarized in
Table 1), can therefore be extended with any of the large number of classifiers
available from the literature.

2.2. Theoretical underpinnings in MCS

A large number of experimental studies have demonstrated the benefits
of classifier combination [24]. However, very few works have provided some
insight into the theoretical explanations.

One preliminary yet rigorous theory for classifier combination was devel-
oped by [38]. Another theoretical analysis of classifier combination was pre-
sented by [39], which is based on the well-known bias/variance dilemma [40].
Theoretical developments in multiple classifiers systems under severe restric-
tions usually assume linearly combined classifiers [41, 42]. As presented in
previous section, another more general theoretical framework was presented
in [1], who concluded that the weighted average combination is the most ro-
bust technique among the non-trained fusion rules evaluated. This result is
also corroborated by the theoretical explanation by [43] for the effectiveness
of the weighted average.
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In the particular case of score fusion for biometric authentication, one of
the very few works providing some theoretical insight was described by [44].
This study assumed Gaussian distributions of client and impostor scores and
used a theoretical model called Variance Reduction-Equal Error rate (VR-
EER). A number of findings linking the correlation and variance of base
experts to the performance improvement of score fusion were then obtained.

Although the existence of these theoretical underpinnings, and the success
of practical algorithms for classifier fusion, the problem of classifier combina-
tion is very complex and most aspects of a general theory still beg explanation
[1]. Some of these not well known aspects include: relation between dimen-
sionality expansion (multiple experts) and dimensionality reduction (expert
combination), effect of individual expert error distribution on the choice of a
combination strategy, etc. Furthermore, a number of practical multiple clas-
sifier approaches are either sequential or based on special rules for handling
exceptions and rejections, which makes difficult the theoretical advance in
this field.

3. MCS in multimodal biometrics

Multimodal biometric authentication can be seen as a two-class multiple
classifier combination problem (either client or impostor). As such, most
of the categories presented in Sect. 2 for general multiple classifier systems
also apply here with some specificities. In particular, a biometric system is
usually divided into four modules: 1) the sensor acquires the biometric data,
2) the feature extraction module process the biometric data in order to ob-
tain a compact yet discriminative representation of the input biometric data,
3) the matching module compares input feature vectors to stored templates
resulting in matching scores, and 4) the decision module releases an identi-
fication or verification decision based on the matching scores. Considering
this architecture of biometric systems based on four modules, we adhere to
the taxonomy described in [45] to outline the state-of-the-art in multimodal
biometric fusion. This taxonomy is sketched in Fig. 2.

3.1. Pre-classification fusion

Before classification/matching, integration of information can be done
either at sensor level or feature level.

In sensor level fusion, raw data from the sensors are combined. One
example is the combination of several cameras in face verification [46].
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Figure 2: Approaches to information fusion in multimodal biometric authentication.
Adapted from Jain et al. (2005) [45].

Feature level fusion refers to the combination of different feature vec-
tors, obtained either with different sensors or by applying different feature
extraction algorithms to the same data. Two simple feature fusion schemes
are: 1) weighting, when the feature vectors are homogeneous, and 2) con-
catenation, when the feature vectors are non-homogeneous. Experiments for
homogeneous and non-homogeneous feature level fusion with face and hand
modalities were reported in [47].

3.2. Post-classification fusion

Approaches for combining information after the matching can be divided
into classifier selection and classifier fusion. In the first category, the result
is based only on the classifier most likely to give the correct decision for
the input pattern. Classifier fusion can be further divided depending on the
information to be combined: decisions, ranks, or matching scores.

Abstract or decision level fusion refers to the combination of decisions
already taken by the individual biometric systems. Examples include: ma-
jority voting, weighted voting based on Dempster-Shafer theory [29], AND
rule, OR rule, etc.

Rank level fusion take place when the individual systems provide a set of
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possible matches ranked according to confidence. This approach only makes
sense in biometric identification, where a number of comparisons between
each input pattern and the stored templates in the database are carried out.
One example of rank level fusion is Borda count, which is based on the sum
of ranks provided by the individual classifiers [48].

Score level fusion, also denoted as measurement or confidence level fu-
sion, refers to the combination of matching scores provided by the different
classifiers. In the context of biometric authentication, score level fusion can
be classified into two categories: combination and classification. In the com-
bination approach the input matching scores are normalized into the same
range and then combined to obtain a scalar fused score. In the classifica-
tion approach the matching scores are considered as input features for a
second-level pattern classification problem between two classes, either client
or impostor.

3.2.1. Combination approach

Combination approaches include: product, sum, max, min, median, and
majority vote rules as described in Eqs. (1) to (7).

In the case of multimodal biometric authentication there are only two
classes (C = 2): ω0 = impostor and ω1 = client. Let us also assume that
the output similarity matching scores sj from each system j = 1, . . . ,M are
normalized into xj in order to have xj ≈ P (ω1|Bj). The a posteriori prob-
abilities for the impostor class are then P (ω0|Bj) = 1 − xj. Under these
common assumptions in multimodal biometric authentication, the classifica-
tion rules in Eqs. (1) to (7) are simplified significantly. As an example, the
sum rule in Eq. (2) is based on the evaluation of

(1−M)P (ω1) +
M∑
j=1

xj > (1−M)P (ω0) +
M∑
j=1

(1− xj), (8)

which is equivalent to evaluating

y =
M∑
j=1

xj >
(1−M)P (ω0)− (1−M)P (ω1) +M

2
= Decision Threshold.

(9)
This last result indicates that the general sum rule for combining classi-

fiers reduces to simple matching score sum plus a decision based on a thresh-

11



old. This decision threshold depends on the number of systems M and the a
priori probabilities of client and impostor classes. The remaining rules can be
similarly demonstrated to reduce to simple product, max, min, and median
of matching scores plus a decision threshold. Variants including weighting
parameters for each system can be also found in the literature [49]

M∑
j=1

wjxj > Decision Threshold. (10)

The parameters wj can be computed heuristically, by exhaustive search
in order to minimize certain error criterion on a training set, or by using a
trained approach based on linear classifiers.

The previous rules assume that the output matching scores from the
individual systems sj have been mapped to a posteriori probabilities xj,
which by no means is a straightforward task and in most cases is not realistic.
This issue is considered in more detail in Sect. 3.2.3.

Another theoretical framework which does not rely on the assumption of
posterior probabilities released by the individual systems was developed by
[50]. This work used Bayesian statistics to estimate the accuracy of individ-
ual classifiers during the fusion process. In brief, this Expert Conciliation
approach results in a combination function based on weighted average of
similarity scores xj

y =


M∑
j=1

wCj xj + wC0 if

∣∣∣∣∣1− M∑
j=1

wCj xj + wC0

∣∣∣∣∣ <
∣∣∣∣∣ M∑j=1

wIj xj + wI0

∣∣∣∣∣
M∑
j=1

wIj xj + wI0 otherwise

, (11)

where the superindexes C and I denote parameters computed over a training
set of client and impostor scores, respectively. Because this method is not
built on the assumption of scores matching a posteriori probabilities, this
combination approach does not rely so heavily on score normalization as the
simple rules mentioned before.

Note that the combination approaches mentioned in this section are ei-
ther fixed or trained. Simple rules such as product, sum, or max are fixed,
although they rely on score normalization which may be subject to training.
On the other hand, the Expert Conciliation scheme in Eq. (11) is a trained
fusion approach.
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As in every pattern recognition problem, the success of fixed rules de-
pends heavily on the prior assumptions. On the other hand, the success of
trained approaches relies heavily on the amount and representativeness of the
training data. This tradeoff can be used to explain the contradictory results
obtained in a number of works when comparing fixed to trained approaches,
[51, 52]. In general, the success of a trained fusion scheme will depend on
the conditions of the problem at hand including the prior information and
the amount of training data [53].

3.2.2. Classification approach

In this category of methods, the normalized matching scores xj, j =
1, . . . ,M are joined together in a feature vector [x1, . . . , xM ]T , which is the
input to a two-class pattern classification problem, either client or impostor.
Although some classification methods may work better when the input fea-
tures are in the same range, the classification approach to fusion does not
necessarily rely on score normalization, so we can assume either xj = sj or
a basic fixed score normalization just to make homogeneous the score ranges
between different systems.

One early study using the classification approach in multimodal biomet-
rics was reported in [54]. This pioneer work combined face (3 classifiers) and
voice (2 classifiers) by using various forms of rank and measurement level
fusion, including a Neural Network.

Chatzis et al. [55] combined in different ways five different unimodal
experts, four for face and one for speech authentication. Experiments were
performed by considering repeatedly each person as an impostor and the re-
maining persons as clients for every shot, with four shots per person. Fusion
methods used were the following: OR and AND logical operators on thresh-
olded scores, k-means algorithm, fuzzy k-means algorithm, fuzzy vector quan-
tization algorithm, fuzzy k-means for fuzzy data, fuzzy vector quantization
for fuzzy data, and median radial basis function network. For algorithms
which operate on fuzzy data, data was fuzzified by quality measures of ex-
perts’ opinions. This is one of the first published works that used quality
measures in the framework of multimodal biometric fusion.

Verlinde et al. [56] followed the classification approach to fusion and com-
pared a number of pattern classification techniques combining face profile,
frontal face, and voice. The results sorted by relative decreasing performance
were the following: Logistic Regression, Maximum a Posteriori, k-Nearest
Neighbors, Multilayer Perceptrons, Binary Decision Trees, Maximum Like-
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lihood, Quadratic Classifiers and Linear Classifiers. In a subsequent contri-
bution [57], the paradigm of Support Vector Machines (SVM) was compared
with all the above-mentioned techniques on the same experimental scenario,
outperforming all of them. This is corroborated by other comparative studies
[58], which favored the SVM approach over Neural Networks and Decision
Trees [59]. The comparisons were only based on recognition error rates.
Therefore the comparative results should be taken with care, as other impor-
tant factors may be considered in practical implementations, namely: ease
of training, ease of implementation, scalability, etc.

Bengio et al. [60] performed fusion of two experts, face verification based
on Neural Networks and voice verification based on Gaussian Mixture Models
by using three different fusion algorithms: Multi-Layer Perceptrons (MLP),
Support Vector Machines (SVM) and Bayes Classifiers using Gaussian Mix-
ture Models (GMM) as density estimators. They compared the performance
of each of these methods with and without estimation of confidence of uni-
modal scores. Intuitively, knowledge of confidence measures on these scores
should help in the weighting process, i.e., if one multimodal system produces
scores not very precisely, its score should be given less weight. Thus, they
proposed and compared three methods to estimate a measure of confidence
over a score. The first method is based on Gaussian hypothesis of the score
distribution. The second method estimates the confidence by using a resam-
pling technique based on groups of training scores. The third method is based
on the adequacy of the trained models to explain the input biometric data.
The conclusion of this study is that some confidence measures were able to
enhance the fusion performance, but not systematically. In this study the
confidence measures were obtained directly either from the available training
scores or from parameters of the trained models, and not from the quality of
the input biometric signals.

Roli et al. [61] estimated the performance of classifier ensembles con-
sisting of two to eight different experts. Experts’ opinions were combined
by using five fixed and two trained fusion rules. Fixed rules included: sum,
majority vote, and order statistics operators such as min, med and max.
Trained rules included: weighted average, and Behavior Knowledge Space
method. They concluded that it is better to combine the most complemen-
tary experts rather than the best performing ones. They also concluded that,
in real applications, the poor quality and/or the limited size of the training
set “can quickly cancel the theoretical advantages of trained rules”. Among
fixed rules, the vote majority rule exhibited good performance.
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Ross and Jain [52] compared the performance of weighted sum, Decision
Tree and Linear Discriminant Classifier for the fusion of face, fingerprint and
hand geometry modalities. By using simple fixed score normalization, sum
rule outperformed both Decision Tree and Linear Discriminant Classifiers.

In Table 2 we summarize some of the mentioned and other representative
works in multimodal biometric fusion published in the last 25 years.

3.2.3. Score normalization

In general, the similarity matching scores sj can be modelled as [45]

sj = f [P (ω1|Bj)] + η(Bj), (12)

where f is a monotonic function and η is the error made in the estimation
of the a posteriori probability by the individual system j. This error can be
due to noise in the input biometric signals or errors in the feature extraction
or matching.

A number of works have focused on mapping output similarity scores sj to
a posteriori probabilities P (ω1|Bj) by using different assumptions. Most of
them assume η(Bj) = 0 in Eq. (12) and particular distributions for the sim-
ilarity scores. Snelick et al. [82] assumed the conditional densities P (sj|ω0)
and P (sj|ω1) to be Gaussian. A more general assumption was developed in
[83] by using non-parametric density estimation based on Parzen Windows.

Either because of the unrealistic assumptions, or because of problems
with density estimation on a finite training set, the prevalent method in
the combination approach is not to map scores to probabilities but just to
transform them into a common domain by using an operational technique for
score normalization [45]. These techniques can be either fixed or adaptive.
The most common techniques for fixed score normalization are:

Min-max. The matching scores s are normalized according to

x =
s−min

max−min
, (13)

where the maximum and minimum are computed from a given set of
training scores. This normalization method is specially prone to errors
due to outliers.

Z-score. The matching scores s are normalized with
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x =
s− µ
σ

, (14)

where µ and σ are respectively the arithmetic mean and standard de-
viation of a given set of training scores.

Exponential functions. This include various forms of exponentials [84]

x = c1 exp(c2s) + c3, (15)

sigmoids [85, 82]

x =
c1

1 + exp(c2s+ c3)
+ c4, (16)

or hyperbolic functions [45]

x = c1 tanh(c2s+ c3) + c4, (17)

where c1 to c4 are parameters. As demonstrated by [45], exponential-
based score normalization is more robust and efficient than min-max
and z-score, where robust refers to insensitivity to the presence of out-
liers, and efficiency refers to the proximity of the obtained estimate to
the optimal estimate when the distribution of the data is known.

After mapping the matching scores sj to a common domain xj, simple
combination rules as in Eq. (9) are then usually applied.

Adaptive score normalization techniques modify the score normalization
functions depending on the context, e.g., for each user [86], or depending on
the input quality [87].

4. Conclusions

In the present paper, Part 1 in a series of two papers, we have first
provided a brief introduction to Multiple Classifier Systems (MCS) including
basic nomenclature, architecture, and key elements. Our main focus has been
into the fundamentals of MCS, providing pointers where the reader may find
detailed descriptions of established MCS algorithms.
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The presentation has been kept as general as possible, in order to be use-
ful for any pattern recognition application where MCS may be applied, e.g.:
biometrics person recognition [17], video surveillance [18], speech technolo-
gies [19], biomedical applications [88], human-computer interaction [20], data
analytics [21], behavioural modelling [22], or recommender systems [23].

We have then overviewed the application of MCS to the particular field of
multimodal biometric person authentication in the last 25 years [17], includ-
ing general descriptions of main MCS elements, methods, and algorithms.
Our presentation has been kept general with a generic mathematical formu-
lation, in order to facilitate the export of experiences and methods to other
information fusion problems like the above mentioned. Based on our math-
ematical presentation, we have also discussed the main theoretical advances
and current state towards a comprehensive theory in the field of MCS.

Based on the theory and framework introduced here, in the companion
paper we develop in more technical detail recent trends and developments
in MCS from multimodal biometrics that incorporate context information in
an adaptive way. These new MCS architectures exploit input quality mea-
sures [68] and pattern-specific particularities that move apart from general
population statistics [84], resulting in robust multimodal biometric systems.
Similarly as in the present paper, methods in the companion paper are in-
troduced in a general way so they can be applied to other information fusion
problems as well.

Finally, also in the companion paper, we also discuss open challenges in
biometrics in which MCS may play a key role.
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