
Chapter 1
An Introduction to Fingerprint
Presentation Attack Detection

Javier Galbally, Julian Fierrez and Raffaele Cappelli

Abstract This chapter provides an introduction to Presentation Attack Detection
(PAD), also coined anti-spoofing, in fingerprint biometrics, and summarizes key
developments for that purpose in the last two decades. After a review of selected lit-
erature in the field, we also revisit the potential of quality assessment for presentation
attack detection. We believe that, beyond the interest that the described techniques
may intrinsically have by themselves, the case study presentedmay serve as an exam-
ple of how to develop and validate fingerprint PAD techniques based on common and
publicly available benchmarks and following a systematic and replicable protocol.

1.1 Introduction

“Fingerprints cannot lie, but liars can make fingerprints”. Unfortunately, this para-
phrase of an old quote attributed to Mark Twain1 has been proven right on many
occasions now.
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As the deployment of fingerprint systems keeps growing year after year in
such different environments as airports, laptops, or mobile phones, people are also
becoming more familiar to their use in everyday life and, as a result, the security
weaknesses of fingerprint sensors are becoming better known to the general pub-
lic. Nowadays, it is not difficult to find websites or even tutorial videos, which give
detail guidance on how to create fake fingerprints which may be used for spoofing
biometric systems.

As a consequence, the fingerprint stands out as one of the biometric traits which
has arisen the most attention not only from researchers and vendors, but also from
the media and users, regarding its vulnerabilities to Presentation Attacks (PAs) (aka
spoofing). This increasing interest of the biometric community in the security eval-
uation of fingerprint recognition systems against presentation attacks has led to the
creation of numerous and very diverse initiatives in this field: the publication of
many research works disclosing and evaluating different fingerprint presentation
attack approaches [1–4]; the proposal of new Presentation Attack Detection (PAD)
(aka anti-spoofing) methods [5–7]; related book chapters [8, 9]; PhD and MSc The-
ses which propose and analyze different fingerprint PA and PAD techniques [10–13];
several patented fingerprint PAD mechanisms both for touch-based and contactless
systems [14–18]; the publication of SupportingDocuments and Protection Profiles in
the framework of the security evaluation standard Common Criteria for the objective
assessment of fingerprint-based commercial systems [19, 20]; the organization of
competitions focused on vulnerability assessment to fingerprint presentation attacks
[21, 22]; the acquisition of specific datasets for the evaluation of fingerprint protec-
tion methods against direct attacks [23, 24], the creation of groups and laboratories
which have the evaluation of fingerprint security as one of their major tasks [25–27];
or of several European Projects on fingerprint PAD as one of their main research
interests [28, 29].

The aforementioned initiatives and other analogue studies have shown the impor-
tance given by all parties involved in the development of fingerprint-based biometrics
to the improvement of the systems security and the necessity to propose and develop
specific protection methods against PAs in order to bring this rapidly emerging tech-
nology into practical use. Thisway, researchers have focused on the design of specific
countermeasures that enable fingerprint recognition systems to detect fake samples
and reject them, improving this way the robustness of the applications.

In the fingerprint field, besides other PAD approaches such as the use of multi-
biometrics or challenge–response methods, special attention has been paid by
researchers and industry to the so-called liveness detection techniques. These algo-
rithms use different physiological properties to distinguish between real and fake
traits. Liveness assessment methods represent a challenging engineering problem as
they have to satisfy certain demanding requirements [30]: (i) noninvasive, the tech-
nique should in no case be harmful for the individual or require an excessive contact
with the user; (ii) user-friendly, people should not be reluctant to use it; (iii) fast,
results have to be produced in a very reduced interval as the user cannot be asked to
interact with the sensor for a long period of time; (iv) low cost, a wide use cannot
be expected if the cost is excessively high; (v) performance, in addition to having a
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good fake detection rate, the protection scheme should not degrade the recognition
performance (i.e., false rejection) of the biometric system.

Liveness detection methods are usually classified into one of two groups: (i)
Hardware-based techniques, which add some specific device to the sensor in order
to detect particular properties of a living trait (e.g., fingerprint sweat, blood pressure,
or odor); (ii) Software-based techniques, in this case, the fake trait is detected once
the sample has been acquired with a standard sensor (i.e., features used to distinguish
between real and fake traits are extracted from the biometric sample, and not from
the trait itself).

The two types of methods present certain advantages and drawbacks over the
other and, in general, a combination of both would be the most desirable protec-
tion approach to increase the security of biometric systems. As a coarse comparison,
hardware-based schemes usually present a higher fake detection rate, while software-
based techniques are in general less expensive (as no extra device is needed), and
less intrusive since their implementation is transparent to the user. Furthermore, as
they operate directly on the acquired sample (and not on the biometric trait itself),
software-based techniques may be embedded in the feature extractor module which
makes them potentially capable of detecting other types of illegal break-in attempts
not necessarily classified as presentation attacks. For instance, software-based meth-
ods can protect the system against the injection of reconstructed or synthetic sam-
ples into the communication channel between the sensor and the feature extractor
[31, 32].

Although, as shown above, a great amount of work has been done in the field
of fingerprint PAD and big advances have been reached over the last decade, the
attackingmethodologies have also evolved and becomemore andmore sophisticated.
This way, while many commercial fingerprint readers claim to have some degree of
PAD embedded, many of them are still vulnerable to presentation attack attempts
using different artificial fingerprint samples. Therefore, there are still big challenges
to be faced in the detection of fingerprint direct attacks.2

This chapter represents an introduction to the problem of fingerprint PAD, includ-
ing an example of experimental methodology [33], and example results extracted
from [34]. More comprehensive and up to date surveys of recent advances can be
found elsewhere [35–37]. After a review of early works in fingerprint PAD, we ana-
lyze and evaluate the potential of quality assessment for liveness detection purposes.
In particular, we consider two different sets of features: (i) one based on fingerprint-
specific quality measures (i.e., quality measures which may only be extracted from
a fingerprint image); (ii) a second set based on general image quality measures (i.e.,
quality measures which may be extracted from any image). Both techniques are
tested on publicly available fingerprint spoofing databases where they have reached
results fully comparable to those obtained on the same datasets and following the
same experimental protocols by top-ranked approaches from the state of the art.

In addition to their very competitive performance, as they are software-based, both
methods present the usual advantages of this type of approaches: fast, as they only

2https://www.iarpa.gov/index.php/research-programs/odin/

https://www.iarpa.gov/index.php/research-programs/odin/
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need one image (i.e., the same sample acquired for verification) to detect whether it
is real or fake; nonintrusive; user-friendly (transparent to the user); cheap and easy
to embed in already functional systems (as no new piece of hardware is required).

The rest of the chapter is structured as follows. A review of relevant early works
in the field of fingerprint PAD is given is Sect. 1.2. A brief description of large and
publicly available fingerprint spoofing databases is presented in Sect. 1.3. A case
study based on the use of quality assessment as PAD tool is introduced in Sect. 1.4
where we give some key concepts about image quality assessment and the rationale
behind its use for biometric protection. The two fingerprint PAD approaches studied
in the chapter based on fingerprint-specific and general quality features are described
respectively in Sects. 1.5 and 1.6. The evaluation of the methods and experimental
results are given in Sect. 1.7. Conclusions are finally drawn in Sect. 1.8.

1.2 Early Works in Fingerprint Presentation Attack
Detection

The history of fingerprint forgery in the forensic field is probably almost as old as that
of fingerprint development and classification itself. In fact, the question of whether
or not fingerprints could be forged was positively answered [38] several years before
it was officially posed in a research publication [39].

Regarding modern automatic fingerprint recognition systems, although other
types of attacks with dead [40] or altered [41] fingers have been reported, almost
all the available vulnerability studies regarding presentations attacks are carried out
either by taking advantage of the residual fingerprint left behind on the sensor sur-
face, or by using some type of gummy fingertip (or even complete prosthetic fingers)
manufactured with different materials (e.g., silicone, gelatin, plastic, clay, dental
molding material, or glycerin). In general, these fake fingerprints may be generated
with the cooperation of the user, from a latent fingerprint or even from a fingerprint
image reconstructed from the original minutiae template [1–3, 23, 42–46].

These very valuable works and other analogue studies have highlighted the neces-
sity to develop efficient protection methods against presentation attacks. One of the
first efforts in fingerprint PAD initiated a research line based on the analysis of the
skin perspiration pattern which is very difficult to be faked in an artificial finger
[5, 47]. These pioneer studies, which considered the periodicity of sweat and the
sweat diffusion pattern, were later extended and improved in two successive works
applying a wavelet-based algorithm and adding intensity-based perspiration features
[48, 49]. These techniques were finally consolidated and strictly validated on a large
database of real, fake, and dead fingerprints acquired under different conditions in
[24]. More recently, a novel region-based liveness detection approach also based on
perspiration parameters and another technique analyzing the valley noise have been
proposed by the same group [50, 51]. Part of these approaches has been implemented
in commercial products [52], and has also been combined with other morphological
features [53, 54] in order to improve the presentation attack detection rates [55].
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A second group of fingerprint liveness detection techniques has appeared as an
application of the different fingerprint distortion models described in the literature
[56–58]. These models have led to the development of a number of liveness detection
techniques based on the flexibility properties of the skin [6, 59–61]. In most of these
works the user is required to move his finger while pressing it against the scanner
surface, thus deliberately exaggerating the skin distortion. When a real finger moves
on a scanner surface, it produces a significant amount of distortion, which can be
observed to be quite different from that produced by fake fingers which are usually
more rigid than skin. Even if highly elastic materials are used, it seems very difficult
to precisely emulate the specific way a real finger is distorted, because the behavior
is related to the way the external skin is anchored to the underlying derma and
influenced by the position and shape of the finger bone.

Other liveness detection approaches for fake fingerprint detection include: the
combination of both perspiration and elasticity-related features in fingerprint image
sequences [62]; fingerprint-specific quality-related features [7, 34]; the combination
of the local ridge frequency with other multiresolution texture parameters [53]; tech-
niques which, following the perspiration-related trend, analyze the skin sweat pores
visible in high definition images [63, 64]; the use of electric properties of the skin
[65]; using several image processing tools for the analysis of the finger tip surface
texture such as wavelets [66], or three very related works using Gabor filters [67],
ridgelets [68] and curvelets [69]; analyzing different characteristics of the Fourier
spectrum of real and fake fingerprint images [70–74].

A critical review of some of these solutions for fingerprint liveness detection was
presented in [75]. In a subsequent work [76], the same authors gave a comparative
analysis of the PAD methods efficiency. In this last work, we can find an estimation
of some of the best performing static (i.e., measured on one image) and dynamic
(i.e., measured on a sequence of images) features for liveness detection, that were
later used together with some fake-finger specific features in [77] with very good
results. Different static features are also combined in [78], significantly improving the
results of the individual parameters. Other comparative results of different fingerprint
PAD techniques are available in the results of the Fingerprint Liveness Detection
Competitions (LivDet series) [21, 22].

In addition, some very interesting hardware-based solutions have been proposed
in the literature applying: multispectral imaging [79, 80], an electrotactile sensor
[81], pulse oxiometry [82], detection of the blood flow [14], odor detection using
a chemical sensor [83], or another trend based on Near Infrared (NIR) illumination
and Optical Coherence Tomography (OCT) [84–89].

More recently, a third type of protection methods which fall out of the traditional
two-type classification software- and hardware-based approaches has been started to
be analyzed in the field of fingerprint PAD. These protection techniques focus on the
study of biometric systems under direct attacks at the score level, in order to propose
and build more robust matchers and fusion strategies that increase the resistance of
the systems against presentation attack attempts [90–94].

Outside the research community, some companies have also proposed different
methods for fingerprint liveness detection such as the ones based on ultrasounds
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[95, 96], light measurements [97], or a patented combination of different unimodal
experts [98]. A comparative study of the PAD capabilities of different commercial
fingerprint sensors appears in [99].

Although the vast majority of the efforts dedicated by the biometric community
in the field of fingerprint presentation attacks and PAD are focused on touch-based
systems, some preliminary works have also been conducted to study the vulnera-
bilities of contactless fingerprint systems against direct attacks and some protection
methods to enhance their security level have been proposed [17, 47, 100].

The approaches mentioned above represent the main historical developments in
fingerprint PAD until ca. 2012–2013. For a survey of more recent and advanced
methods in the last 5 years we refer the reader to [36, 37], and the ODIN program.3

1.3 Fingerprint Spoofing Databases

The availability of public datasets comprising real and fake fingerprint samples and of
associated common evaluation protocols is basic for the development and improve-
ment of fingerprint PAD methods.

However, in spite of the large amount ofworks addressing the challenging problem
of fingerprint protection against direct attacks (as shown in Sect. 1.2), in the great
majority of them, experiments are carried out on proprietary databases which are not
distributed to the research community.

Currently, the two largest fingerprint spoofing databases publicly available for
researchers to test their PAD algorithms are:

• LivDet DBs [21, 22]: These datasets were generated for the different campaigns
of the Fingerprint Liveness Detection Competition series (in 2009, 2011, 2013,
2015, and 2017). Most of the data can be found in the LivDet series website.4

Each dataset is complemented with specific training and testing protocols and
most campaigns contain over 10,000 samples from over 100 fingers generated
with materials such as: silicone, gelatine, latex, wood glue, ecoflex, and playdoh.

• ATVS-Fake Fingerprint DB (ATVS-FFp DB) [34]: This database is available from
the website.5 It contains over 3,000 real and fake fingerprint samples coming from
68 different fingers acquired using a flat optical sensor, a flat capacitive sensor, and
a thermal sweeping sensor. The gummy fingers were generated with and without
the cooperation of the user (i.e., recovered froma latent fingerprint) usingmodeling
silicone.

3https://www.iarpa.gov/index.php/research-programs/odin/
4http://livdet.org/
5http://atvs.ii.uam.es/index.jsp

https://www.iarpa.gov/index.php/research-programs/odin/
http://livdet.org/
http://atvs.ii.uam.es/index.jsp
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1.4 A Case Study: Quality Assessment Versus Fingerprint
Spoofing

The problem of presentation attack detection can be seen as a two-class classification
problem where an input biometric sample has to be assigned to one of two classes:
real or fake (Fig. 1.1).

Simple visual inspection of an image of a real fingerprint and a fake sample of
the same trait shows that the two images can be very similar and even the human eye
may find it difficult to make a distinction between them after a short inspection. Yet,
some differences between the real and fake fingerprints may become evident once
the images are translated into a proper feature space.

Therefore, the key point of the process is to find a set of discriminant features
which permits to build an appropriate classifier which gives the probability of the
image “liveness” given the extracted set of features.

In the present chapter, we explore and evaluate the potential of quality assessment
for fingerprint liveness detection. In particular, we consider two different sets of
features: (i) one based on fingerprint-specific quality measures (i.e., quality measures
which may only be extracted from a fingerprint image); (ii) a second set based on
general image quality measures (i.e., quality measures which may be extracted from
any image).

The use of quality assessment for PAD purposes is promoted by the assumption
that: “It is expected that a fake image captured in an attack attempt will have a
different quality than a real sample acquired in the normal operation scenario for
which the sensor was designed.”

Fig. 1.1 General diagram of the fingerprint PAD case study considered in Sect. 1.4. Approach 1 and
Approach 2 are described in Sects. 1.5 and 1.6, respectively. FQMs stands for Fingerprint Quality
Measures, while IQMs stands for Image Quality Measures
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Expected quality differences between real and fake samples may include: degree
of sharpness, color and luminance levels, local artifacts, amount of information found
in both types of images (entropy), structural distortions, or natural appearance. For
example, it is not rare that fingerprint images captured from a gummy finger present
local acquisition artifacts such as spots and patches, or that they have a lower defini-
tion of ridges and valleys due to the lack of moisture.

In the current state of the art, the rationale behind the use of quality assessment
features for liveness detection is supported by three factors:

• Imagequality has been successfully used in previousworks for imagemanipulation
detection [101, 102] and steganalysis [103–105] in the forensic field. To a certain
extent, many fingerprint presentation attacks may be regarded as a type of image
manipulation which can be effectively detected, as shown in the present research
work, by the use of different quality features.

• Human observers very often refer to the “different appearance” of real and fake
samples to distinguish between them. The different metrics and methods imple-
mented here for quality assessment intend to estimate in an objective and reliable
way the perceived appearance of fingerprint images.

• Moreover, different quality measures present different sensitivity to image arti-
facts and distortions. For instance, measures like the mean squared error respond
more to additive noise, whereas others such as difference measured in the spectral
domain are more sensitive to blur; while gradient-related features react to distor-
tions concentrated around edges and textures. Therefore, using a wide range of
quality measures exploiting complimentary image quality properties should per-
mit to detect the aforementioned quality differences between real and fake samples
expected to be found in many attack attempts.

All these observations lead us to believe that there is sound proof for the “quality
difference” hypothesis and that qualitymeasures have the potential to achieve success
in biometric protection tasks.

In the next sections, we describe two particular software-based implementations
for fingerprint PAD. Both methods use only one input image (i.e., the same sample
acquired for authentication purposes) to distinguish between real and fake finger-
prints. The difference between the two techniques relies on the sets of quality-based
features used to solve the classification problem: (i) the first PAD method uses a
set of 10 fingerprint-specific quality measures (see Sect. 1.5); (ii) the second uses a
set of 25 general image quality measures (see Sect. 1.6). Later, both techniques are
evaluated on two publicly available databases and their results are compared to other
well-known techniques from the state of the art (see Sect. 1.7).
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1.5 Approach 1: Fingerprint-Specific Quality Assessment
(FQA)

The parameterization proposed in this section comprises ten Fingerprint-specific
Quality Measures (FQMs). A number of approaches for fingerprint image quality
computation have been described in the literature [110]. Fingerprint image qual-
ity can be assessed by measuring one of the following properties: ridge strength
or directionality, ridge continuity, ridge clarity, integrity of the ridge–valley struc-
ture, or estimated verification performance when using the image at hand. A number
of information sources are used to measure these properties: (i) angle information
provided by the direction field, (ii) Gabor filters, which represent another imple-
mentation of the direction angle [111], (iii) pixel intensity of the gray-scale image,
(iv) power spectrum, and (v) neural networks. Fingerprint quality can be assessed
either analyzing the image in a holistic manner, or combining the quality from local
non-overlapped blocks of the image.

In the following, we give some details about the ten fingerprint-specific quality
measures used in this PAD method. The features implemented have been selected
in order to cover the different fingerprint quality assessment approaches mentioned
above so that themaximumdegree of complementarity among themmaybe achieved.
This way, the protection method presents a high generality and may be successfully

Table 1.1 Summary of the 10 Fingerprint-specific Quality Measures (FQMs) implemented in
Sect. 1.5 for fingerprint PAD. All features were either directly taken or adapted from the references
given. For each feature, the fingerprint property measured and the information source used for its
estimation is given. For a more detailed description of each feature, we refer the reader to Sect. 1.5

List of 10 FQMs implemented

# Acronym Name Ref. Property
measured

Source

1 OCL Orientation Certainty
Level

[106] Ridge strength Local angle

2 PSE Power Spectrum
Energy

[107] Ridge strength Power spectrum

3 LOQ Local Orientation
Quality

[108] Ridge continuity Local angle

4 COF Continuity of the
Orientation Field

[106] Ridge continuity Local angle

5 MGL Mean Gray Level [76] Ridge clarity Pixel intensity

6 SGL Standard Deviation
Gray Level

[76] Ridge clarity Pixel intensity

7 LCS1 Local Clarity Score 1 [108] Ridge clarity Pixel intensity

8 LCS2 Local Clarity Score 2 [108] Ridge clarity Pixel intensity

9 SAMP Sinusoid Amplitude [109] Ridge clarity Pixel intensity

10 SVAR Sinusoid Variance [109] Ridge clarity Pixel intensity
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used to detect a wide range of presentation attacks. A classification of the ten features
and of the information source exploited by each of them is given in Table 1.1.

As the features used in this approach evaluate fingerprint-specific properties, prior
to the feature extraction process, it is necessary to segment the actual fingerprint from
the background. For this preprocessing step, the same method proposed in [112] is
used.

1.5.1 Ridge Strength Measures

• Orientation Certainty Level (OCL) [106] measures the energy concentration
along the dominant direction of ridges using the intensity gradient. It is computed
as the ratio between the two eigenvalues of the covariance matrix of the gradient
vector. A relative weight is given to each region of the image based on its distance
from the centroid, since regions near the centroid are supposed to provide more
reliable information [107].AnexampleofOrientationCertaintyLevel computation
for a real and fake fingerprints is shown in Fig. 1.2.

• Power Spectrum Energy (PSE) [107] is computed using ring-shaped bands.
For this purpose, a set of bandpass filters is employed to extract the energy in
each frequency band. High quality images will have the energy concentrated in
few bands while poor ones will have a more diffused distribution. The energy
concentration is measured using the entropy. An example of quality estimation
using the global quality indexPSE is shown inFig. 1.3 for fake and real fingerprints.

Fig. 1.2 Computation of the Orientation Certainty Level (OCL) for fake and real fingerprints. Panel
a are the input fingerprint (left is fake, right is real). Panel b are the block-wise values of the OCL;
blocks with brighter color indicate higher quality in the region
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Fig. 1.3 Computation of the energy concentration in the power spectrum for fake and real finger-
prints. Panel a are the power spectra of the images shown in Fig. 1.2. Panel b shows the energy
distributions in the region of interest

1.5.2 Ridge Continuity Measures

• Local Orientation Quality (LOQ) [108] is computed as the average absolute
difference of direction angle with the surrounding image blocks, providing infor-
mation about how smoothly direction angle changes from block to block. Quality
of the whole image is finally computed by averaging all the Local Orientation
Quality scores of the image. In high quality images, it is expected that ridge direc-
tion changes smoothly across the whole image. An example of Local Orientation
Quality computation is shown in Fig. 1.4 for fake and real fingerprints.

• Continuity of the Orientation Field (COF) [106]. This method relies on the fact
that, in good quality images, ridges and valleys must flow sharply and smoothly
in a locally constant direction. The direction change along rows and columns of
the image is examined. Abrupt direction changes between consecutive blocks are
then accumulated and mapped into a quality score. As we can observe in Fig. 1.4,
ridge direction changes smoothly across the whole image in case of high quality.

1.5.3 Ridge Clarity Measures

• Mean Gray Level (MGL) and Standard Deviation Gray Level (SGL), com-
puted from the segmented foreground only. These two features had already been
considered for liveness detection in [76].

• Local Clarity Score (LCS1 and LCS2) [108]. The sinusoidal-shaped wave that
models ridges and valleys [109] is used to segment ridge and valley regions (see
Fig. 1.5). The clarity is then defined as the overlapping area of the gray level
distributions of segmented ridges and valleys. For ridges/valleys with high clarity,
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Fig. 1.4 Computation of the Local Orientation Quality (LOQ) for fake and real fingerprints. Panel
a are the direction fields of the images shown in Fig. 1.2a. Panel b are the block-wise values of the
average absolute difference of local orientation with the surrounding blocks; blocks with brighter
color indicate higher difference value and thus, lower quality

Fig. 1.5 Modeling of ridges
and valleys as a sinusoid

both distributions should have a very small overlapping area.An example of quality
estimation using the Local Clarity Score is shown in Fig. 1.6 for two fingerprint
blocks coming from fake and real fingerprints. It should be noted that sometimes
the sinusoidal-shaped wave cannot be extracted reliably, specially in bad quality
regions of the image. The quality measure LCS1 discards these regions, therefore
being an optimistic measure of quality. This is compensated with LCS2, which
does not discard these regions, but they are assigned the lowest quality level.
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Fake Q block Real Q block 

Fig. 1.6 Computation of the Local Clarity Score for two blocks coming from real and fake finger-
prints. The fingerprint blocks appear on top, while below we show the gray level distributions of
the segmented ridges and valleys. The degree of overlapping for the real and fake blocks is 0.22
and 0.10, respectively

• Amplitude and Variance of the Sinusoid that models Ridges and Valleys
(SAMP and SVAR) [109]. Based on these parameters, blocks are classified as
good and bad. The quality of the fingerprint is then computed as the percentage
of foreground blocks marked as good.

1.6 Approach 2: General Image Quality Assessment (IQA)

The goal of an objective Image Quality Measure (IQM) is to provide a quantitative
score that describes the degree of fidelity or, conversely, the level of distortion of
a given image. Many different approaches for objective Image Quality Assessment
(IQA) have been described in the literature [113]. From a general perspective, IQ
metrics can be classified according to the availability of an original (distortion-
free) image, with which the distorted image is to be compared. Thus, objective
IQA methods can fall in one of two categories: (i) full reference techniques, which
include themajority of traditional automatic image estimation approaches, andwhere
a complete reference image is assumed to be known (e.g., with a large use in the field
of image compression algorithms) [114]; (ii) no-reference techniques (also referred
as blind), which assess the quality of the test image without any reference to the
original sample, generally using some pretrained statistical model [115].
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Fig. 1.7 Classification of the 25 image quality measures implemented in Sect. 1.6. Acronyms (in
bold) of the different measures are explained in Table 1.2

The parameterization proposed in this section and applied to fingerprint liveness
detection comprises 25 image quality measures (IQMs) both full reference and blind.
In order to generate a system as general as possible in terms of number of attacks
detected, we have given priority to IQMs which evaluate complementary properties
of the image (e.g., sharpness, entropy or structure). In addition, to assure a user-
friendly nonintrusive system, big importance has been given to the complexity and
the feature extraction time of each IQM, so that the overall speed of the final fake
detection algorithm allows it to operate in real-time environments.

Furthermore, as the method operates on the whole image without searching for
any fingerprint-specific properties, it does not require any preprocessing steps (e.g.,
fingerprint segmentation) prior to the computation of the IQ features. This charac-
teristic minimizes its computational load.

The final 25 selected image quality measures are summarized in Table 1.2. Details
about each of these 25 IQMs are given in Sects. 1.6.1 and 1.6.2. For clarity, in Fig. 1.7,
we show a diagram with the general IQM classification followed in these sections.
Acronyms of the different features are highlighted in bold in the text and in Fig. 1.7.

1.6.1 Full Reference IQ Measures

As described previously, Full Reference (FR) IQAmethods rely on the availability of
a clean undistorted reference image to estimate the quality of the test sample. In the
problem of fake detection addressed in this work such a reference image is unknown,
as the detection system only has access to the input sample. In order to circumvent
this limitation, the same strategy already successfully used for image manipulation
detection in [101] and for steganalysis in [103] is implemented here.

The input gray-scale image I (of size N × M) is filtered with a low-pass Gaussian
kernel (σ = 0.5 and size 3 × 3) in order to generate a distorted version Î. Then, the
quality between both images (I and Î) is computed according to the corresponding
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Î)

=
∑

N i=
1
∑

M j=
1
(I
i,
j·Î
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full reference IQA metric. This approach assumes that the loss of quality produced
by Gaussian filtering differs between real and fake biometric samples. Assumption
which is confirmed by the experimental results given in Sect. 1.7.

1.6.1.1 FR-IQMs: Error Sensitivity Measures

Traditional perceptual image quality assessment approaches are based on measuring
the errors (i.e., signal differences) between the distorted and the reference images, and
attempt to quantify these errors in a way that simulates human visual error sensitivity
features.

Although their efficiency as signal fidelity measures is somewhat controversial
[116], up to date, these are probably the most widely used methods for IQA as they
conveniently make use of many known psychophysical features of the human visual
system [117], they are easy to calculate and usually have very low computational
complexity.

Several of these metrics have been included in the 25-feature parameterization
applied in the present work. For clarity, these features have been classified here into
five different categories (see Fig. 1.7) according to the image property measured
[118]:

• Pixel Difference Measures [118, 121]. These features compute the distortion
between two images on the basis of their pixelwise differences. Here we include:
MeanSquaredError (MSE), Peak Signal-to-NoiseRatio (PSNR), Signal-to-Noise
Ratio (SNR), Structural Content (SC), Maximum Difference (MD), Average Dif-
ference (AD), Normalized Absolute Error (NAE), R-Averaged Maximum Differ-
ence (RAMD) andLaplacianMeanSquaredError (LMSE). The formal definitions
for each of these features are given in Table 1.2.
In the RAMD entry in Table 1.2, maxr is defined as the r -highest pixel difference
between two images. For the present implementation, R = 10.
In the LMSE entry in Table 1.2, h(Ii, j ) = Ii+1, j + Ii−1, j + Ii, j+1 + Ii, j−1 − 4Ii, j .

• Correlation-Based Measures [118, 121]. The similarity between two digital
images can also be quantified in terms of the correlation function. A variant of
correlation-based measures can be obtained by considering the statistics of the
angles between the pixel vectors of the original and distorted images. These fea-
tures include (also defined in Table 1.2): Normalized Cross-Correlation (NXC),
Mean Angle Similarity (MAS), and Mean Angle Magnitude Similarity (MAMS).

In the MAMS entry in Table 1.2, αi, j = 2
π
cos−1 〈Ii, j ,Îi, j 〉

||Ii, j ||||Îi, j ||• Edge-BasedMeasures. Edges and other two-dimensional features such as corners
are some of the most informative parts of an image, which play a key role in the
human visual system and in many computer vision algorithms including quality
assessment applications [122].
Since the structural distortion of an image is tightly linked with its edge degra-
dation, here we have considered two edge-related quality measures: Total Edge
Difference (TED) and Total Corner Difference (TCD).
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In order to implement both features, which are computed according to the corre-
sponding expressions given in Table 1.2, we use: (i) the Sobel operator to build
the binary edge maps IE and ÎE; (ii) the Harris corner detector [133] to compute
the number of corners Ncr and N̂cr found in I and Î.

• Spectral Distance Measures. The Fourier transform is another traditional image
processing tool which has been applied to the field of image quality assessment
[118, 123]. In this work, we will consider as IQ spectral-related features: the
Spectral Magnitude Error (SME) and the Spectral Phase Error (SPE), defined in
Table 1.2 (where F and F̂ are the respective Fourier transforms of I and Î).

• Gradient-BasedMeasures. Gradients convey important visual informationwhich
can be of great use for quality assessment.Many of the distortions that can affect an
image are reflected by a change in its gradient. Therefore, using such information,
structural and contrast changes can be effectively captured [124].
Two simple gradient-based features are included in the biometric protection system
studied here: Gradient Magnitude Error (GME) and Gradient Phase Error (GPE),
defined in Table 1.2 (where G and Ĝ are the gradient maps of I and Î defined as
G = Gx + iGy , where Gx and Gy are the gradients in the x and y directions).

1.6.1.2 FR-IQMs: Structural Similarity Measures

Although being very convenient and widely used, the aforementioned image quality
metrics based on error sensitivity present several problems which are evidenced
by their mismatch (in many cases) with subjective human-based quality scoring
systems [116]. In this scenario, a recent new paradigm for image quality assessment
based on structural similarity was proposed following the hypothesis that the human
visual system is highly adapted for extracting structural information from the viewing
field [125]. Therefore, distortions in an image that come from variations in lighting,
such as contrast or brightness changes (nonstructural distortions), should be treated
differently from structural ones.

Among these recent objective perceptualmeasures, the Structural Similarity Index
Measure (SSIM) has the simplest formulation and has gained widespread popularity
in a broad range of practical applications [125, 134]. In view of its very attractive
properties, the SSIM has been included in the 25-feature parameterization.

1.6.1.3 FR-IQMs: Information Theoretic Measures

The quality assessment problemmay also be understood, from an information theory
perspective, as an information fidelity problem (rather than a signal fidelity problem).
The core idea behind these approaches is that an image source communicates to a
receiver through a channel that limits the amount of information that could flow
through it, thereby introducing distortions. The goal is to relate the visual quality of
the test image to the amount of information shared between the test and the reference
signals, or more precisely, the mutual information between them. Under this general
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framework, image quality measures based on information fidelity exploit the (in
some cases unprecise) relationship between statistical image information and visual
quality [127, 128].

In the present work, we consider two of these information theoretic features:
the Visual Information Fidelity (VIF) which measures quality fidelity as the ratio
between the total information ideally extracted by the brain from the distorted image
and that from the reference sample [127]; and the Reduced Reference Entropic Dif-
ference index (RRED), which approaches the problem of QA from the perspective of
measuring distances between the reference image and the projection of the distorted
image onto the space of natural images [128].

1.6.2 No-Reference IQ Measures

Unlike the objective reference IQA methods, in general, the human visual system
does not require of a reference sample to determine the quality level of an image.
Following this same principle, automatic no-reference image quality assessment
(NR-IQA) algorithms try to handle the very complex and challenging problem of
assessing the visual quality of images in the absence of a reference. Presently, NR-
IQA methods generally estimate the quality of the test image according to some
pretrained statistical model. Depending on the images used to train this model and
on the a priori knowledge required, the methods are coarsely divided into one of
three trends [115]:

• Distortion-Specific Approaches. These techniques rely on previously acquired
knowledge about the type of visual quality loss caused by a specific distortion. The
final quality measure is computed according to a model trained on clean images
and on images affected by this particular distortion. Two of these measures have
been included in the biometric protection method studied in the present work.
The JPEG Quality Index (JQI) evaluates the quality in images affected by the
usual block artifacts found in many compression algorithms running at low bit
rates such as the JPEG [129].
The High-Low Frequency Index (HLFI) is formally defined in Table 1.2. It was
inspired by previous work which considered local gradients as a blind metric to
detect blur and noise [130]. Similarly, the HLFI feature is sensitive to the sharpness
of the image by computing the difference between the power in the lower and upper
frequencies of the Fourier Spectrum. In the HLFI entry in Table 1.2, il , ih , jl , jh are
respectively the indices corresponding to the lower and upper frequency thresholds
considered by the method. In the current implementation, il = ih = 0.15N and
jl = jh = 0.15M .

• Training-BasedApproaches. Similarly to the previous class ofNR-IQAmethods,
in this type of techniques amodel is trained using clean and distorted images. Then,
the quality score is computed based on a number of features extracted from the
test image and related to the general model [131]. However, unlike the former
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approaches, these metrics intend to provide a general quality score not related to a
specific distortion. To this end, the statistical model is trained with images affected
by different types of distortions.
This is the case of the Blind Image Quality Index (BIQI) described in [131], which
is part of the 25 feature set used in the present work. The BIQI follows a two-stage
framework inwhich the individualmeasures of different distortion-specific experts
are combined to generate one global quality score.

• Natural Scene Statistic Approaches. These blind IQA techniques use a pri-
ori knowledge taken from natural scene distortion-free images to train the initial
model (i.e., no distorted images are used). The rationale behind this trend relies on
the hypothesis that undistorted images of the natural world present certain regular
properties which fall within a certain subspace of all possible images. If quanti-
fied appropriately, deviations from the regularity of natural statistics can help to
evaluate the perceptual quality of an image [132].
This approach is followed by the Natural Image Quality Evaluator (NIQE) used
in the present work [132]. The NIQE is a completely blind image quality ana-
lyzer based on the construction of a quality aware collection of statistical features
(derived from a corpus of natural undistorted images) related to a multi-variate
Gaussian natural scene statistical model.

1.7 Results

In order to achieve reproducible results, we have used in the experimental validation
two of the largest publicly available databases for fingerprint spoofing (introduced
in Sect. 1.3): (i) the LivDet 2009 DB [21] and (ii) the ATVS-FFp DB [34]. This has
allowed us to compare, in an objective and fair way, the performance of the proposed
system with other existing state-of-the-art liveness detection solutions.

According to their associated protocols, the databases are divided into a: train set,
used to train the quadratic classifier (i.e., based on Quadratic Discriminant Analysis,
QDA); and test set, used to evaluate the performance of the protection method. In
order to generate unbiased results, there is no overlap between both sets (i.e., samples
corresponding to each user are just included in the train or the test set).

The task in all the scenarios and experiments described in the next sections is to
automatically distinguish between real and fake fingerprints. Therefore, in all cases,
results are reported in terms of: the False Genuine Rate (FGR), which accounts for
the number of false samples that were classified as real; and the False Fake Rate
(FFR), which gives the probability of an image coming from a genuine sample being
considered as fake. The Half Total Error Rate (HTER) is computed as HTER =
(FGR + FFR)/2.



1 An Introduction to Fingerprint Presentation Attack Detection 23

Table 1.3 Results obtained in theATVS-FFpDBby the twobiometric protectionmethodsdescribed
in Sects. 1.5 and 1.6

Results: ATVS-FFp DB

Biometrika Precise Yubee

FFR FGR HTER FFR FGR HTER FFR FGR HTER

IQF-based 4.9 7.6 5.8 1.8 7.0 4.4 2.2 9.7 5.9

IQA-based 9.2 4.0 6.6 6.8 1.5 4.2 7.9 1.9 4.9

1.7.1 Results: ATVS-FFp DB

Both the development and the test set of the ATVS-FFp DB contain half of the
fingerprint images acquired with and without the cooperation of the user, following
a twofold cross validation protocol. In Table 1.3, we show the detection results of
the two systems described in Sects. 1.5 (top row) and 1.6 (bottom row).

The performance of both algorithms is similar, although in the overall, the method
basedongeneral imagequality assessment is slightly better in twoof the three datasets
(Precise and Yubee). In addition, thanks to its simplicity and lack of image prepro-
cessing steps, the IQA-based method is around 30 times faster than the one using
fingerprint-specific quality features (tested on the same Windows-based platform).
This gives the IQA-based scheme the advantage of being usable in practical real-time
applications, without losing any accuracy.

1.7.2 Results: LivDet 2009 DB

The train and test sets selected for the evaluation experiments on this database are the
same as the ones used in the LivDet 2009 competition, so that the results obtained by
the two described methods based on quality assessment may be directly compared to
the participants of the contest. Results are shown in the first two rows of Table 1.4.
For comparison, the best results achieved in LivDet 2009 for each of the individual
datasets are given in the third row.

Rows four to seven show post-competition results over the same dataset and pro-
tocol. In [55], a novel fingerprint liveness detection method combining perspiration
and morphological features was presented and evaluated on the LivDet 2009 DB
following the same protocol (training and test sets) used in the competition. In that
work, comparative results were reported with particular implementations of the tech-
niques proposed in: [66], based on wavelet analysis; [69], based on curvelet analysis;
and [53], based on the combination of local ridge frequencies and multiresolution
texture analysis. In the last four rows of Table 1.4, we also present those results so
that they can be compared with the two quality-basedmethods described in Sects. 1.5
(first row) and 1.6 (second row).
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Table 1.4 Results obtained in the LivDet 2009 DB by: the two biometric protection methods
described inSects. 1.5 and1.6 (IQF-based and IQA-based, top two rows); each of the best approaches
participating in LivDet 2009 [21] (third row); the method proposed in [55] which combines per-
spiration and morphological features (fourth row); the method proposed in [66] based on wavelet
analysis, according to an implementation from [55] (fifth row); themethod proposed in [69] based on
curvelet analysis, according to an implementation from [55] (sixth row); and the method proposed
in [53] based on the combination of local ridge frequencies and multiresolution texture analysis,
according to an implementation from [55] (bottom row)

Results: LivDet 2009 DB

Biometrika CrossMatch Identix

FFR FGR HTER FFR FGR HTER FFR FGR HTER

IQF-based 3.1 71.8 37.4 8.8 20.8 13.2 4.8 5.0 6.7

IQA-based 14.0 11.6 12.8 8.6 12.8 10.7 1.1 1.4 1.2

LivDet 2009 15.6 20.7 18.2 7.4 11.4 9.4 2.7 2.8 2.8

Marasco et al. 12.2 13.0 12.6 17.4 12.9 15.2 8.3 11.0 9.7

Moon et al. 20.8 25.0 23.0 27.4 19.6 23.5 74.7 1.6 38.2

Nikam et al. 14.3 42.3 28.3 19.0 18.4 18.7 23.7 37.0 30.3

Abhyankar et al. 24.2 39.2 31.7 39.7 23.3 31.5 48.4 46.0 47.2

The results given in Table 1.4 show that the method based on general image
quality assessment outperforms all the contestants in LivDet 2009 in two of the
datasets (Biometrika and Identix), while its classification error is just slightly worse
than the best of the participants for the Crossmatch data. Although the results are not
as good for the case of the IQF-based method, its performance is still competitive
compared to that of the best LivDet 2009 participants.

The classification rates of the two quality-based approaches are also clearly lower
than those reported in [55] for the different liveness detection solutions tested.

1.8 Conclusions

The study of the vulnerabilities of biometric systems against presentation attacks has
been a very active field of research in recent years [36, 37, 135]. This interest has led
to big advances in the field of security-enhancing technologies for fingerprint-based
applications. However, in spite of this noticeable improvement, the development of
efficient protection methods against known threats (usually based on some type of
self-manufactured gummy finger) has proven to be a challenging task.

Simple visual inspection of an image of a real fingerprint and its corresponding
fake sample shows that the two images can be very similar and even the human eye
may find it difficult to make a distinction between them after a short inspection.
Yet, some disparities between the real and fake images may become evident once
the images are translated into a proper feature space. These differences come from
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the fact that fingerprints, as 3-D objects, have their own optical qualities (absorption,
reflection, scattering, refraction),which othermaterials (silicone, gelatin, glycerin) or
synthetically produced samples do not possess. Furthermore, fingerprint acquisition
devices are designed to provide good quality samples when they interact, in a normal
operation environment, with a real 3-D trait. If this scenario is changed, or if the
trait presented to the scanner is an unexpected fake artifact, the characteristics of the
captured image may significantly vary.

In this context, it is reasonable to assume that the image quality properties of real
accesses and fraudulent attacks will be different. Following this “quality difference”
hypothesis, in this chapter, after an overview of early works and main research lines
in fingerprint PAD methods, we have explored the potential of quality assessment as
a protection tool against fingerprint direct attacks.

For this purpose, we have considered two different feature sets which we have
combined with simple classifiers to detect real and fake access attempts: (i) a set of
10 fingerprint-specific quality measures which requires of some preprocessing steps
(e.g., fingerprint segmentation); (ii) a set of 25 complementary general image quality
measures which may be computed without any image preprocessing.

The two PAD methods have been evaluated on two large publicly available
databases following their associated protocols. This way, the results are reproducible
and may be fairly compared with other past or future fingerprint PAD solutions.

Several conclusions can be extracted from the evaluation results presented in the
experimental sections of the chapter: (i) The proposed methods, especially the one
based on general image quality assessment, are able to generalize well performing
consistently well for different databases, acquisition conditions, and spoofing sce-
narios. (ii) The error rates achieved by the described protection schemes are in many
cases lower than those reported by other related fingerprint PAD systems which have
been tested in the framework of different independent competitions. (iii) In addition
to its very competitive performance, the IQA-based approach presents some other
very attractive features such as: its simple, fast, nonintrusive, user-friendly and cheap,
all of them very desirable properties in a practical protection system.

All the previous results validate the “different-quality” hypothesis formulated in
Sect. 1.4, and show the great potential of quality assessment as a PAD tool to secure
fingerprint recognition systems.

Overall, the chapter has tried to give an introduction to fingerprint PAD, including
an overview of early works, main research lines, and selected results. For more
recent and advanced developments occurred in the last 5 years we refer the reader
to [36, 37]. In addition, the experimental evaluation carried out in the chapter has
been performed following a clear and standard methodology [33] based on common
protocols, metrics, and benchmarks, which may serve as a good baseline starting
point for the validation of future fingerprint PAD methods.
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