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Abstract—Data have become one of the most valuable things in
this new era where deep learning technology seems to overcome
traditional approaches. However, in some tasks, such as the
verification of handwritten signatures, the amount of publicly
available data is scarce, what makes difficult to test the real limits
of deep learning. In addition to the lack of public data, it is not
easy to evaluate the improvements of novel approaches compared
with the state of the art as different experimental protocols
and conditions are usually considered for different signature
databases. To tackle all these mentioned problems, the main
contribution of this study is twofold: i) we present and describe
the new DeepSignDB on-line handwritten signature biometric
public database, and ii) we propose a standard experimental
protocol and benchmark to be used for the research community in
order to perform a fair comparison of novel approaches with the
state of the art. The DeepSignDB database is obtained through
the combination of some of the most popular on-line signature
databases, and a novel dataset not presented yet. It comprises
more than 70K signatures acquired using both stylus and finger
inputs from a total of 1526 users. Two acquisition scenarios
are considered, office and mobile, with a total of 8 different
devices. Additionally, different types of impostors and number
of acquisition sessions are considered along the database. The
DeepSignDB and benchmark results are available in GitHub1.
Index Terms—biometrics, handwritten signature, DeepSignDB

database, deep learning, RNN, DTW

I. INTRODUCTION

On-line handwritten signature verification has widely

evolved in the last 40 years [1]. From the original Wacom

devices specifically designed to acquire handwriting and sig-

nature in office-like scenarios to the current mobile acquisition

scenarios in which signatures can be captured using our own

personal smartphone anywhere [2]. However, and despite the

improvements achieved in the acquisition technology, the core

of most of the state-of-the-art signature verification systems

is still based on traditional approaches such as Dynamic

Time Warping (DTW), Hidden Markov Models (HMM), and

Support Vector Machines (SVM). This aspect seems to be a bit

unusual if we compare to other biometric traits such as face

and fingerprint in which Deep Learning (DL) has defeated

by far traditional approaches [3], [4], and even in tasks more

related to signature verification such as handwriting recogni-

tion or writer verification [5], [6]. So, why DL approaches

are not widely used in on-line signature verification yet? One

major handicap could be probably the complex procedure of

acquiring a large-scale database for training the models as

1https://github.com/BiDAlab/DeepSignDB

signatures are not publicly available on internet as it happens

with other biometric traits such as the face [7].
In addition to the scarcity of data for training DL ap-

proaches, another important observation motivates this work:

the lack of a standard experimental protocol to be used for

the research community in order to perform a fair comparison

of novel approaches to the state of the art, as different exper-

imental protocols and conditions are usually considered for

different signature databases [8], [9]. With all these concerns

in mind, in this study we present the new DeepSignDB

handwritten signature biometric database, the largest on-line

signature database to date. Fig. 1 graphically summarises

the design, acquisition devices, and writing tools considered

in the DeepSignDB database. Its application extends from

the improvement of signature verification systems via deep

learning to many other potential research lines, e.g., studying:

i) user-dependent effects, and development of user-dependent
methods in signature biometrics, and handwriting recognition

at large [10], ii) the neuromotor processes involved in signature
biometrics [11], and handwriting in general [12], iii) sensing
factors in obtaining representative and clean handwriting and

touch interaction signals [13], iv) human-device interaction
factors involving handwriting and touchscreen signals [14],

and development of improved interaction methods [15], and v)
population statistics around handwriting and touch interaction

signals, and development of new methods aimed at recognising

or serving particular population groups [16], [17].
The main contributions of this study can be summarised as

follows:

• We present and describe the new DeepSignDB on-line

handwritten signature database. This database is obtained

through the combination of some of the most well-

known databases, and a novel dataset not presented yet. It

comprises more than 70K signatures acquired using both

stylus and finger inputs from a total 1526 users. Two

acquisition scenarios are considered, office and mobile,

with a total of 8 different devices. Additionally, different

types of impostors and number of acquisition sessions are

considered along the database.

• We propose a standard experimental protocol to be used
for the research community in order to perform a fair

comparison of novel approaches to the state of the art.

Thus, we also release the files with all the signature

comparisons carried out using the final evaluation dataset.

This way we provide an easily reproducible framework.
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Fig. 1: Description of the design, acquisition devices, and writing tools considered in the new DeepSignDB database. A total

of 1526 users and 8 different captured devices are used (5 Wacom and 3 Samsung general purpose devices). For the Samsung

devices, signatures are also collected using the finger. Gen. Sig. = Genuine Signatures, and Sk. Forg. = Skilled Forgeries.

TABLE I: Total number of users and signatures considered in

the DeepSignDB database for training the networks compared

to previous studies.

Work # Users # Signatures
Otte et al. [18] 20 ∼1K

Tolosana et al. [19] 300 ∼8K
Lai and Jin [20] 193 ∼9K

DeepSignDB Database 1084 ∼50K

• We report a benchmark evaluation of the new Deep-

SignDB database considering a state-of-the-art system

based on DTW and DL.

The remainder of the paper is organised as follows. Sec. II

summarises previous studies carried out in on-line signature

verification via DL. Sec. III describes the design of the Deep-

SignDB signature database. Sec. IV describes the proposed

experimental protocol, and the benchmark evaluation carried

out using a state-of-the-art signature verification system. Fi-

nally, Sec. V draws the final conclusions and points out some

lines for future work.

II. ON-LINE SIGNATURE VERIFICATION

VIA DEEP LEARNING

Despite the lack of data, some authors have preliminary

evaluated the potential of Recurrent Neural Networks (RNNs),

which is a specific DL architecture used for modelling

sequential data with arbitrary length, for on-line signature

verification. Table I depicts the total number of users and

signatures considered in the DeepSignDB database for training

the networks compared to previous studies. In [18], the authors

performed an exhaustive analysis of Long Short-Term Memory

(LSTM) RNNs using a total of 20 users and ∼1K signatures
for training. Three different scenarios were studied: i) train-
ing a general network to distinguish forgeries from genuine

signatures, ii) training a different network for each writer,
and iii) training the network using only genuine signatures.
However, all experiments failed obtaining a final 23.75%

EER for the best network configuration, far away from the

state of the art, concluding that LSTM RNN systems trained

with standard mechanisms were not appropriate for the task

of signature verification as the amount of available data for

this task is scarce compared to other tasks, e.g., handwriting

recognition. More recently, some researchers have preliminary

shown the potential of DL for the task of on-line signature

verification through the design of new architectures. In [19],

we proposed an end-to-end writer-independent RNN signature

verification system based on a Siamese architecture. LSTM

and Gated Recurrent Unit (GRU) RNNs were studied, using

both normal and bidirectional configurations. For training

the networks, we considered a total of 300 users and ∼8K
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signatures. Our proposed system outperformed a state-of-the-

art signature verification system based on DTW and feature

selection techniques for the case of skilled forgeries. However,

the results achieved using that RNN system were not able

to outperform the DTW system for the case of random

forgeries. Finally, Lai and Jin proposed in [20] the use of

GRU RNNs in combination with a novel descriptor named

Length-Normalized Path Signature (LNPS). Experiments were

carried out using a total of 193 users and ∼9K signatures

for the training, analysing both skilled and random forgeries.

The DeepSignDB database presented in this study increases in

large numbers the users and signatures available for training

the networks.

III. DEEPSIGNDB DATABASE DESCRIPTION

The DeepSignDB database comprises a total of 1526 users

from four different popular databases (i.e., MCYT, Biose-

curID, Biosecure DS2, and e-BioSign DS1) and a novel

signature database not presented yet, named e-BioSign DS2.

Fig. 1 graphically summarises the design, acquisition devices,

and writing tools considered in the DeepSignDB database.

A short description of each database regarding the device,

writing input, number of acquisition sessions and time gap

between them, and type of impostors [21] is now included for

completeness. For more details we refer to their corresponding

references.

A. MCYT

The MCYT database [22] comprises a total of 25 genuine

signatures and 25 skilled forgeries per user, acquired in a

single session in blocks of 5 signatures. There are a total of 330

users and signatures were acquired considering a controlled

and supervised office-like scenario. Users were asked to sign

on a piece of paper, inside a grid that marked the valid signing

space, using an inking pen. The paper was placed on a Wacom

Intuos A6 USB pen tablet that captured the following time

signals: X and Y spatial coordinates (resolution of 0.25 mm),

pressure (1024 levels), pen angular orientations (i.e., azimuth

and altitude angles) and timestamps (100 Hz). In addition,

pen-up trajectories are available.

Regarding the type of impostors, static forgeries were con-

sidered allowing forgers to have access only to the image of

the signatures to be forged.

B. BiosecurID

The BiosecurID database [23] comprises a total of 16

genuine signatures and 12 skilled forgeries per user, captured

in 4 separate acquisition sessions leaving a two-month interval

between them. There are a total of 400 users and signatures

were acquired considering a controlled and supervised office-

like scenario. Users were asked to sign on a piece of paper,

inside a grid that marked the valid signing space, using an

inking pen. The paper was placed on a Wacom Intuos 3 pen

tablet that captured the following time signals: X and Y spatial
coordinates (resolution of 0.25 mm), pressure (1024 levels),

pen angular orientations (i.e., azimuth and altitude angles) and

timestamps (100 Hz). Pen-up trajectories are also available.
Regarding the type of impostors, both static and dynamic

forgeries were considered: in the first two sessions forgers

had access only to the image of the signature to be forged

whereas in the last two sessions forgers had also access to the

dynamics.

C. Biosecure DS2
The Biosecure DS2 database [24] comprises a total of 30

genuine signatures and 20 skilled forgeries per user, captured

in 2 separate acquisition sessions leaving a three-month time

interval between them. There are a total of 650 users and

signatures were acquired considering a controlled and su-

pervised office-like scenario. Users were asked to sign on a

paper sheet placed on top of a Wacom Intuos 3 device while

sitting. The same acquisition conditions were considered as

per BiosecurID database.
Regarding the type of impostors, only dynamic forgeries

were considered.

D. e-BioSign DS1
The e-BioSign DS1 database [2] is composed of five dif-

ferent devices. Three of them are specifically designed for

capturing handwritten data (i.e., Wacom STU-500, STU-530,

and DTU-1031), while the other two are general purpose

tablets not designed for that specific task (Samsung ATIV

7 and Galaxy Note 10.1). It is worth noting that all five

devices were used with their own pen stylus. Additionally,

the two Samsung devices were used with the finger as input,

allowing the analysis of the writing input on the system

performance. The same capturing protocol was used for all

five devices: devices were placed on a desktop and subjects

were able to rotate them in order to feel comfortable with

the writing position. The software for capturing handwriting

and signatures was developed in the same way for all devices

in order to minimise the variability of the user during the

acquisition process.
Signatures were collected in two sessions for 65 subjects

with a time gap between sessions of at least 3 weeks. For each

user and writing input, there are a total of 8 genuine signatures

and 6 skilled forgeries. For the case of using the stylus as input,

information related to X and Y spatial coordinates, pressure

and timestamp is recorded for all devices. In addition, pen-up

trajectories are also available. However, pressure information

and pen-up trajectories are not recorded when the finger is

used as input.
Regarding the impostors, both dynamic and static forgeries

were considered in the first and second acquisition sessions,

respectively.

E. e-BioSign DS2
DeepSignDB database also includes a new on-line signature

dataset not presented yet, named e-BioSign DS2. This dataset

follows the same capturing protocol as e-BioSign DS1. Three

different devices were considered: a Wacom STU-530 specif-

ically designed for capturing handwritten data, a Samsung
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TABLE II: Experimental protocol details of the DeepSignDB evaluation dataset (442 users). Numbers are per user and device.

STYLUS WRITING INPUT
Database #Users Devices #Train Genuine Signatures #Test Genuine Signatures #Test Skilled Forgeries #Test Random Forgeries
MCYT 100 Wacom Intuos A6 1/4 (Session 1) 21 (rest) 25 (all) 99 (one of the rest users)

BiosecurID 132 Wacom Intuos 3 1/4 (Session 1) 12 (Sessions 2-4) 12 (all) 131 (one of the rest users)
Biosecure DS2 140 Wacom Intuos 3 1/4 (Session 1) 15 (Session 2) 20 (all) 139 (one of the rest users)

e-BioSign DS1 35

Wacom STU-500
Wacom STU-530
Wacom DTU-1031
Samsung ATIV 7
Samsung Note 10.1

1/4 (Session 1) 4 (Session 2) 6 (all) 34 (one of the rest users)

e-BioSign DS2 35 Wacom STU-530 1/4 (Session 1) 4 (Session 2) 6 (all) 34 (one of the rest users)

FINGER WRITING INPUT
Database #Users Devices #Train Genuine Signatures #Test Genuine Signatures #Test Skilled Forgeries #Test Random Forgeries

e-BioSign DS1 35
Samsung ATIV 7
Samsung Note 10.1

1/4 (Session 1) 4 (Session 2) 6 (all) 34 (one of the rest users)

e-BioSign DS2 35
Samsung Note 10.1

Samsung S3
1/4 (Session 1) 4 (Session 2) 6 (all) 34 (one of the rest users)

Galaxy Note 10.1 general purpose tablet, and a Samsung

Galaxy S3 smartphone. For the first device, signatures where

captured using the stylus in an office-like scenario, i.e., the

device was placed on a desktop and subjects were able to

rotate it in order to feel comfortable with the writing position.

For the Samsung Galaxy Note 10.1 tablet and Galaxy S3

smartphone, the finger was used as input. The acquisition

conditions emulated a mobile scenario where users had to sign

while sitting.

Signatures were collected in two sessions for 81 users

with a time gap between sessions of at least 3 weeks. For

each user, device, and writing input, there are a total of 8

genuine signatures and 6 skilled forgeries. For the case of

using the stylus as input, information related to X and Y spatial
coordinates, pressure and timestamp is recorded for all devices.

In addition, pen-up trajectories are also available. However,

pressure information and pen-ups trajectories are not recorded

when the finger is used as input.

Regarding the type of impostors, only dynamic forgeries

were considered, allowing forgers to have access to both image

and dynamics of the signatures to be forged. In order to

perform high quality forgeries, users were allowed to visualize

a recording of the dynamic realization of the signature to forge

as many times as they wanted.

IV. DEEPSIGNDB BENCHMARK

This section reports the benchmark evaluation carried out

for the DeepSignDB on-line handwritten signature database.

Sec. IV-A describes all the details of our proposed experimen-

tal protocol to be used for the research community in order to

facilitate the fair comparison of novel approaches to the state

of the art. Then, Sec. IV-B describes the baseline signature

verification system considered in the benchmark evaluation.

Finally, we analyse the results obtained in Sec. IV-C.

A. Experimental Protocol

The DeepSignDB database has been divided into two

different datasets, one for the development and training of

the system and the other one for the final evaluation. The

development dataset comprises around 70% of the users of

each database whereas the remaining 30% are included in the

evaluation dataset. It is important to note that each dataset

comprises different users in order to avoid biased results.

Thus, we first identified all those users that took part in the

acquisition of different databases. Additionally, we corrected

several mistakes we found along the different databases.

For the training of the systems, the development dataset

comprises a total of 1084 users. In our experiments, we have

divided this dataset into two different subsets, training (80%)

and validation (20%). However, as this dataset is used only for

development, and not for the final evaluation of the systems,

we prefer not to set any restriction and let researchers use it

as they like.

For the final testing of the systems, the remaining 442 users

of the DeepSignDB database are included in the evaluation

dataset. In order to perform a complete and fair analysis of

the signature verification systems, and see their generalisation

capacity to different scenarios, the following aspects have been

considered in the final experimental protocol design:

• Inter-session variability: genuine signatures from dif-

ferent sessions are considered for training and testing

(different acquisition blocks for the MCYT database).

• Number of training signatures: two different cases are
considered, the case of having just one genuine signature

from the first session (1vs1) or the case of using the first

4 genuine signatures from the first session (4vs1).

• Impostor scenario: skilled and random forgeries are

considered in the experimental protocol. For the skilled

forgery case, all available samples are included in the

analysis whereas for the random forgery case, one gen-

uine sample of each of the remaining users of the same

database is considered. This way verification systems are

tested with different types of presentation attacks [21].

• Writing input: stylus and finger scenarios are also

considered in the experimental protocol due to the high

acceptance of the society to use mobile devices on a daily

basis [25].

Table II describes all the experimental protocol details of

the DeepSignDB evaluation dataset for both stylus (top) and

finger (bottom) writing inputs.
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(a) Stylus (b) Finger

Fig. 2: System performance results over the DeepSignDB evaluation dataset. (a) Stylus writing input. (b) Finger writing input.

B. Baseline Signature Verificastion System
For the benchmark evaluation of the DeepSignDB database,

we have considered the same DTW and RNN signature

verification systems presented in [19]. In that study, RNN

approaches outperformed a DTW system for skilled forgeries.

However, for random forgeries, DTW still outperformed RNNs

with results very close to 0% EER. As a result, we propose

in this benchmark a signature verification system based on the

two following stages:

1) We first consider the same DTW system to detect random

forgeries as it provides very good results against this type

of attacks.

2) Then, in case the input signature is not detected as

random forgery, it is moved forward to the second au-

thentication stage based on a Bidirectional GRU (BGRU)

signature verification system with a Siamese architec-

ture [19]. This second stage is in charge of detecting

skilled forgeries.

Finally, for the analysis of having 4 train genuine signatures

(4vs1), the final score is obtained as the average score of the

4 one-to-one comparisons.

C. Experimental Results
Two different scenarios are evaluated. First, an office-like

scenario where users perform their signatures using the stylus

as input (Table II, top), and then a mobile scenario where users

perform their signatures using the finger (Table II, bottom).
1) Stylus Writing Input Scenario: For the development

of our baseline system, the weights of the BGRU system are

trained using the development dataset composed of 1084 users.

Only signatures acquired using the stylus are considered, end-

ing up with around 309K genuine and impostor comparisons

(247K and 62K for training and validation, respectively). It

is important to remark: i) the same number of genuine and
impostor comparisons are used to train the BGRU in order to

avoid bias, and ii) only skilled forgeries are used as impostors
(the DTW is in charge of detecting the random forgeries).

Fig. 2a shows the system performance results obtained

using the DeepSignDB evaluation dataset for the stylus sce-

nario. Analysing the skilled forgery case, the baseline system

achieves 8.5% and 7.9% EERs for the 1vs1 and 4vs1 cases,

respectively. For this specific impostor case, both DET curves

are very similar despite having more training signatures per

user (from one to four). We believe this is produced due to

the limitations of our Siamese architecture as just a single train

signature of the user is introduced in the system per compari-

son. Therefore, new DL architectures should be proposed for

the research community to improve the system performance

when having more available signatures.

Analysing the random forgery case, our baseline system

achieves 1.8% and 1.1% EERs for the 1vs1 and 4vs1 cases,

respectively. In this specific impostor case, a higher system

performance improvement is achieved when increasing the

training signatures from one to four. For a high convenient

system with a False Rejection Rate (FRR) of 0.5%, a False

Acceptance Rate (FAR) of 20% is achieved by the baseline

system for the 1vs1 case. This FAR value improves to around

4% for the 4vs1 case, improving the security of the system

against random attacks in large margins. These results show

the potential of the first stage based on DTW against random

forgeries.

2) Finger Writing Input Scenario: We consider the same
baseline system trained in the previous section for the stylus

input. This way we can: i) evaluate the generalisation capacity
of the network to unseen scenarios, e.g., the finger, and ii)
encourage all the research community to use the DeepSignDB

database and explore new DL approaches such as transfer

learning in this challenging scenario [26], [27].

Fig. 2b shows the system performance results obtained

using the DeepSignDB evaluation dataset for the finger sce-

nario. Analysing the skilled forgery case, the baseline system

achieves 18.6% and 17.3% EERs for the 1vs1 and 4vs1 cases,

respectively. Despite these results are higher than the same

ones obtained in the stylus scenario, the baseline system has
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outperformed the original results obtained in [2], where one

system was specifically trained per device.

Analysing the random forgery case, our baseline system

achieves 1.2% and 0.7% EERs for the 1vs1 and 4vs1 cases,

respectively. These results outperform the results achieved in

the stylus scenario. For a high convenient system with a FRR

= 0.5%, a FAR = 4% is achieved for the 1vs1 case, a FAR

improvement of 16% compared to the stylus case. The same

trend is observed for the 4vs1 case, achieving a FAR around

1% for a FRR = 0.5%.

V. CONCLUSIONS

In this paper we have presented the DeepSignDB on-line

handwritten signature database, the largest on-line signature

database to date. This database comprises more than 70K

signatures acquired using both stylus and finger inputs from a

total of 1526 users. Two acquisition scenarios are considered

(i.e., office and mobile), with a total of 8 different devices.

Additionally, different types of impostors and number of

acquisition sessions are considered along the database.

In addition, we propose a standard experimental proto-

col and benchmark of the new DeepSignDB database us-

ing a state-of-the-art signature verification system. For the

stylus scenario, results around 8% and 1-2% EERs have

been obtained for skilled and random forgeries, respectively.

Analysing the finger scenario, the same baseline system trained

for the stylus case has been considered. Higher EERs have

been obtained for skilled forgeries. However, a considerable

system performance improvement is achieved compared to the

stylus scenario for random forgeries.

For future work, we encourage all the research community

to use DeepSignDB database for several purposes: i) perform
a fair comparison of novel approaches to the state of the art,

ii) evaluate the limits of novel DL architectures, and iii) carry
out a more exhaustive analysis of the challenging finger input

scenario.
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