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Abstract: Cancelable biometrics are a group of techniques to transform the input biometric to an irreversible feature intentionally us-
ing a transformation function and usually a key in order to provide security and privacy in biometric recognition systems. This trans-
formation is repeatable enabling subsequent biometric comparisons. This paper introduces a new idea to be exploited as a transforma-
tion function for cancelable biometrics aimed at protecting templates against iterative optimization attacks. Our proposed scheme is
based on time-varying keys (random biometrics in our case) and morphing transformations. An experimental implementation of the pro-
posed scheme is given for face biometrics. The results confirm that the proposed approach is able to withstand leakage attacks while im-

proving the recognition performance.
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1 Introduction

Biometrics are unique methods of identifying people
based on their biological and behavioral characteristics.
The advantage of biometric recognition in authentication
systems compared to conventional methods such as using
passwords or smart cards, has resulted in attracting much
attention to this field. However, the widespread usage of
biometrics has raised serious security and privacy con-
cernsl! 2. In addition, standard cryptographic approaches
failed to address these concerns due to the noisy nature of
biometricsBl. Therefore, a new class of protection meth-
ods called biometric template protection (BTP) has
emerged as a solution(4 8. Biometric template protection
is a set of techniques to preserve the security and pri-
vacy of the subject’s acquired biometric features. The
main goal is to generate a protected biometric reference
out of original biometric data that guarantees desired at-
tributes: noninvertibility (irreversibility), revocability (re-
newability), and unlinkability (nonlinkability) without
degrading the recognition performance. Noninvertibility
refers to the computational difficulty of obtaining the ori-
ginal biometric template from someone’s protected bio-
metric reference. Revocability refers to the ability to
change the biometric reference (template) for the same
raw input biometric data without affecting the system
performance. Unlinkability refers to the computational
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difficulty of ascertaining the subject’s identity by linking
multiple biometric references of him. To this end, BTP
methods have been introduced and commonly divided in-
to three categories: cancelable
cryptosystems, and biometrics in encrypted domainsl¥.
Among these methods, cancelable biometrics!l) are
very promising due to their unique features such as
providing revocability in the case of leakage reports. In
general, cancelable biometrics refers to a group of tem-
plate protection techniques with the primary aim of im-
proving template security and privacy by transforming
the original feature using an irreversible transformation
function such that the recognition can still be performed
but in the transformed domain. These methods should

biometrics, biometric

maintain four characteristics for the transformed feature:
diversity, revocability, non-invertibility, and recognition
performance. During enrollment in a biometric verifica-
tion scenario, some biometric data are extracted upon
presentation, then the corresponding cancelable biomet-
ric transformation is applied to these features (mainly by
using auxiliary data) and finally, the result (transformed
template) is stored on the server’s database. During veri-
fication, when the client presents her biometric feature,
the transformed template is extracted similarly to the en-
rollment phase but by applying the previously stored or
known auxiliary data. Finally, matching takes place
between the generated cancelable template at the verific-
ation phase and the one stored at the enrollment phase
called the reference. A general taxonomy of all cancelable
biometric methods containing six major categories was
proposed recently in [11].

In the present paper, we adopted the concept of the
one-time-pad methodll to derive one-time biometrics as
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a new cancelable biometrics method. The core elements of
our proposed scheme are: 1) to use biometric data gener-
ated randomly with natural appearance as time-variant
keys(2l, 2) combining these keys (random biometrics)
with real input biometric data using image/signal morph-
ing techniques('?l, and 3) keeping track of the key/tem-
plate variations in time in a specific secure exchange pro-
tocol to enable biometric comparisons while protecting
against potential attacks.

The present paper is the extended version of our pre-
liminary researchl4. In this paper, we extend our previ-
ous results by experimenting in a wider range of settings.
In particular, first, we increased the number of verifica-
tion sessions to demonstrate the superiority of the pro-
posed method against iterative optimization attacks in
longer runs compared to other protection methods.
Second, we used another dataset, Face Mask Lite, a
GAN-generated face image dataset, as random biomet-
rics in addition to face images taken from the labeled
faces in the wild (LFW) dataset in order to produce our
morphed templates. Third, we used the pre-trained Ar-
cFace and AdaFace models on top of ResNet-50 to re-
port the result of the proposed method in a wider range
of face recognition systems.

The rest of this paper is organized as follows: Section 2
summarizes related works in cancelable biometrics.
Section 3 describes the threat model under which we have
conducted our experiments and compared the security
improvement of our proposed method with other scenari-
os. Section 4 describes our proposed cancelable biomet-
rics method called one-time biometrics (OTB)-morph.
The experimental results for implementing the proposed
method on face biometrics and its advantages compared
to existing methods are reported in Section 5. Finally,
Section 6 concludes the paper.

2 Related works

Over the past two decades, many cancelable biomet-
rics studies have been carried out due to the increasing
usage of biometric-based authentication. In this section,
we provide a brief description of the most noticeable at-
tempts in this area.

The concept of cancelable biometrics was first intro-
duced in [15] to enhance security and privacy in biomet-
ric-based authentication systems. Among early notice-
able attempts, Jin et al.['l proposed a random projection-
based technique called BioHashing. This method projects
biometric features to a random space by taking the inner
product between a tokenized pseudo-random number and
the subject’s fingerprint. In 2005, Ang et al.ll”) proposed a
key-dependent cancelable template where a geometric
transformation was applied to features extracted from a
fingerprint so as to protect minutiae templates. In 2006,
Lee et al.l'8] presented a work securing iris features coined
as S-Iris encoding. To this end, they iterated inner
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products between secret pseudo-random numbers and the
iris features. In 2007, the first alignment-free cancelable
biometrics method was introduced by Lee et al. They
protected fingerprint templates by extracting rotational
and translational invariant features from each minutia.
Later that year, Ratha et al.[l% suggested three different
methods (Cartesian, polar, and surface folding) to trans-
form minutia positions extracted from a fingerprint im-
age. These transformations were aimed at distorting ori-
ginal biometrics and offering noninvertibility and re-
vokability. However, soon after Quan et al.l20) showed
that most of the transformed minutia in [19] could be ex-
actly inversed.

More recently Maiorana et al.l2ll proposed a convolu-
tion-based noninvertible transformation named BioCon-
volving, which can be applied to any sequence-based bio-
metric. They practiced their approach on online signa-
ture biometrics and its security relies on the difficulty of
solving a blind deconvolution problem. In the same year,
Ouda et al.22l proposed a cancelable biometric scheme for
protecting iris-codes. Their method extracts consistent
bits from iris-codes and further encodes them using a ran-
dom encoding process referred to as BioEncoding. Anoth-
er studyl23] generated cancelable iris biometrics using sec-
tored random projections that year. This method mitig-
ates the performance degradation due to eyelids and eye-
lashes. In 2012, Ferrara et al.24 provided noninvertibility
based on dimensionality reduction and binarization to
protect minutia-cylinder-code, which is a local minutia
representation. Later, Gomez-Barrero et al.2527 pro-
posed an alignment-free cancelable iris template based on
bloom filters. They argued that successive mapping of
parts of a binary biometric template to a bloom filter rep-
resents a noninvertible transformation. Chin et al.[28 pro-
posed another template protection technique in 2014 by
fusing fingerprints and palmprints at the feature level us-
ing client-specific keys. Three years later, Lai et al.[29 in-
troduced a cancelable iris template generation method
coined as indexing-first-one (IFO) hashing. The method is
inspired by Min-hashing and extended by using modulo
threshold functions and P-order Hadamard products. In
2019, Sadhya and Ramanl generated a cancelable iris
template using randomized bit sampling. Their method
(LSC) is functionally based on the notion of locality sens-
itive hashing (LSH) in which two items that are relat-
ively close to each other, are hashed into the same loca-
tionBl. In 2020, Kirchgasser et al.Bll compared cancelable
approaches using finger vein biometrics in both the sig-
nal and the feature domains. They reported that for most
experimental settings, it is possible to track a subject
across several instances generated with various keys. In
the same year, the same research group reported in [32]
that considering state-of-the-art deep-learning methods,
warping-based cancellable biometrics is no longer a pro-
tection scheme. The next year, Badr et al.33 presented a
cancellable face recognition scheme that is based on face
image encryption with fractional-order (FO) Lorenz
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chaotic system. In 2022, Dong et al.34 proposed a deep
learning-based cancellable biometric scheme for face iden-
tification (one-to-many matching). In this research, they
used a deep rank hashing (DRH) network and a random-
ized lookup table function to transform a raw face image
into discriminative yet compact binary face hash codes.
Finally, Chang et al.3% proposed a multi-biometric can-
celable approach using the fuzzy extractor and a bit-wise
encryption scheme to transform a biometric template to a
protected template by means of a secret key generated
from another biometric template.

What makes our research different from these works,
is addressing the iterative optimization attacks. This is
very important, because with the appearance of ad-
versarial examples as a branch of iterative optimization,
the possibility of this threat has increased tangibly. To
the best of authors knowledge, there is no prior biomet-
ric template protection method taking into account ad-
dressing the threat of iterative optimization attacks.

3 Threat model

Biometric systems can be the target for an attacker to
conduct malicious activities, including impersonation. The
possible attack points are positioned in a generic biomet-
ric system in Fig. 11 2],

This paper is focused on addressing three challenges:
1) privacy leakages at attack point AP6, 2) injection at-
tacks at AP4, and 3) leakage threats at AP7. This threat
model specifies the adversary's goal, capabilities, and
knowledge under which the aforementioned attacks are
feasible. In particular, we assume that:

1) The attacker is able to eavesdrop on the communic-
ation channel from AP6 where genuine clients request
verification.

2) The similarity score of biometric templates at the
matching phase is leaked to the attacker through any
wide-range means of leakage attacks such as backdoors,
trojans, side-channel attacksl36 37, etc.

3) The attacker is able to obtain the similarity score
between an arbitrary biometric input and the feature ref-
erence of victims from AP7 for some verification sessions,
not necessarily being consecutive.

4) The attacker possesses the knowledge of the under-
lying model with which the protected template (victim's
reference) is generated from the input biometric data
(i.e., the biometric feature extractor).

5) The attacker is able to obtain at least one biomet-
ric input of the victim.

6) The attacker is able to override the feature extract-
or and can inject his biometric features in AP4.

Using this leaked score or the obtained biometric in-
put, the attacker can maximize the similarity of his arbit-
rary input biometric compared to the victim's reference
by iterative optimization, an adversarial perturbation
that is added to the attacker image after each comparis-
on with the victim image gradually in order to lower the
similarity score, e.g., deep leakage from gradient38], and
hill-climbing[39-41],

4 Proposed scheme: OTB-morph

The aim of the proposed scheme is to address both
privacy leakages at attack point 6 (AP6, see Fig.1) and
leakage attacks at attack point 7 (AP7). The block dia-
gram showing the architecture and data flow of the pro-
posed scheme in a generic biometric system is shown in
Fig.2.

There are three parties involved during biometric veri-
fication. A Client who wants to be verified in a Server us-
ing a temporary identity that has been assigned to him
by a trusted third party (TTP). We refer interested read-
ers in trusted systems to [42]. It is assumed that enroll-
ment phases in both server and TTP are already accom-
plished and the corresponding auxiliary data (AD) and
pseudonyms are stored on a secure element in the client’s
device or his smartcard (note that the complete process of
the proposed method is explained in detail later with an
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Fig. 1 Attack points (AP) in a generic biometric system
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Fig. 2  Architecture of the proposed one-time biometrics scheme (OTB-morph)

example in face biometrics). In this regard, the client
starts the verification session by sending his request to
the server using one of his stored pseudonyms (num 1).
Pseudonyms are temporary identities that have been as-
signed to the client previously by the TTP. We adopted
the pseudonym architecture described in Section 4.1 from
[43] for our problem. Upon receiving the answer from the
server, the client presents his biometric to the input
sensor (num 2) and the extracted feature will be trans-
formed to a cancelable biometric template (num 3) using
the current AD (num 4) that he has stored on his
device/smartcard from the enrolment process. In the next
step, the produced cancelable biometric template is sent
to the server domain to be compared in the biometric
matcher with the feature reference of the client (num 5).
Depending on the verification threshold, access is gran-
ted or denied (num 6). Generally, most cancelable bio-
metric techniques need AD to compute the transforma-
tion of biometric features. This AD can be a password, a
random number, etc., and it is usually permanent until a
leakage on the respective cancelable template is reported.
In our proposed method, these auxiliary data are random
biometrics (e.g., GAN-generated synthetic faces[',
LSTM-generated synthetic handwriting44, etc.), sent to
the client inside the pseudonym sets managed by the
TTP. When the matching is successful, we propose to re-
enroll by picking a new random biometric (AD) (num 7)
and combining it with the already extracted feature. The
resulting cancelable template is stored as a new reference
(num 8) in the server’s database. Finally, the new AD is
stored on the client’s device replacing the previous one.
Here with OTB-morph, we propose to combine the ran-
dom and the input raw biometrics via image-morphing or
signal-morphing, depending on the nature of the biomet-
rics at hand.

The notations used in this paper are described in
Table 1.

4.1 Enrollment in the trusted third party

The client registers in the TTP by sending his D¢

@ Springer

Table 1 Notations used in this paper

Notation Description
Nz The nonce generated by the party «
da The private key of the party «
Qu The public key of the party =
PN}; The i-th pseudonym set of client
LTé, The lifetime of the i-th pseudonym set of client
ID, The identifier of the party « in the transport protocol
PIDrTp The permanent identity of TTP
TIDiC The i-th temporary identity of client
SK;C The i-th pseudonym set shared secret key
RFé The i-th randomly generated face image using as AD
Fé Client presented face at the i-th session
Ric Client feature reference at the i-th session
MFé The morphed face of client used at the i-th session
MGF The morph generation function
Mtch The face matching function
KGF The symmetric key generation function
AEne(k, m) I:s;lr]?metric encryption of the message m with the
Ene(k, m) 1i};}r,n]:netric encryption of the message m with the
Sig(k,m) Signing the message m with the key k
respy The response of party =

I The concatenation operation

and his public key Q¢c. Then the TTP stores these data
and sends back m temporary identities (called pseud-
onym) PNE, i =1,2,--- ,n with his IDprp to the client.
Upon receiving n pseudonym sets, the client stores all of
them protected in his device. These pseudonym sets are
meant to be used per verification session. The structure



M. Ghafourian et al. / OTB-morph: One-time Biometrics via Morphing 859

of the pseudonym and corresponding signature for client
C is as follows:

PNG = {TIDg || AEnc(Qe, RFE) || PIDrrp|
LT¢ || Srre} (1)

Strp = Sig(drrp, TIDG | AEnc(Qe, RFE))|
PIDrrp || LTE || Strp)- (2)

4.2 Enrollment in server

The genuine client enrolls in the server by presenting
his face. Upon this, the system picks a random pseud-
onym and applies a random face image as auxiliary data
to the cancelable method. This face image is an arbitrary
face image (real or artificial) that is not repeated in any
pseudonym sets before or in the future. Then, a face
morphing transformation is applied to both face images
to generate the protected template. Next, the cancelable
template is stored on the server's database as the client’s
biometric reference. Finally, the arbitrary face extracted
earlier from the pseudonym set is recorded as the current
auxiliary data (current AD) in a secure element at the
client’s device and the corresponding pseudonym is dis-
carded. The process of client C registering in the server
through a secure channel is described in the following
steps:

Step 1. The client presents his face F& and picks a
random pseudonym set from his storage, extracts RF} by
performing ADec(dc, AEnc(Qc, RFE)) and  computes
MFE = MGF(Ff, RFY), then sends the message Mi =
{IDc, MFE, PNK} to the server to request registration.

Step 2. Upon receiving M;, the server first checks
whether LT}, is valid. If it does not hold, the server ter-
minates the registration; otherwise, it tries to verify the
authenticity of PN} by decrypting S&rp in PN using
Qrsm and compares the obtained parameters with the
corresponding ones existing in the pseudonym content. If

Choose PN}
Extract TIDE!

this authenticity does not hold, the server terminates the
session; otherwise, it generates a random secret SKio
corresponding to the client’s i-th pseudonym set. Then,
the server stores PN&, MF)L and SKio for the client's
temporary identity TID% on its database. Finally, it
sends the message M = {IDg, N5, SK5c} to the client.
Henceforth, we call the MF/,, the one that the server
stores on its database, client’s reference R%.

Step 3. Upon receiving the message Mo, the client
stores {TID., RF.,SK5c} on his device protected as
the current credentials and drops PNE.

4.3 Verification protocol using the pro-
posed method

In order to establish a face verification between the
client and the server using the proposed method, the fol-
lowing steps are provided. A summary of these steps is
given in Fig. 3.

Step 1. The client starts the session by picking a ran-
dom pseudonym PN, extracting T'1 D(Cf_l) from his stor-
age, and generating a nonce N¢. Then, he sends the mes-
sage M1 = {ID¢, N¢, PN}, TIDg_l)} to the server.

Step 2. Upon receiving Mi, the server first checks
whether LT}, is valid. If it does not hold, the server ter-
minates the session; otherwise, it tries to verify the au-
thenticity of PN{ by decrypting Sh7p in PN using
Qrsm and compares the obtained parameters with the
corresponding ones existing in the pseudonym content. If
this authenticity does not hold, the server terminates the
session; otherwise, the server extracts SK gg Y corres-
ponding to T'1 D(Cf71> from its database, and then com-
putes resps = Enc(SKggl),TIDg_l)) by performing
symmetric encryption. Finally, the server generates a
nonce and replies to the client by sending the message
My ={IDg,Ng,resps}.

Step 3. Upon receiving the message Moz, the client
verifies resps by checking whether (3) holds. If it does
not hold, client terminates the session and starts a new

Server

My = {ID¢,N¢, PN}, TIDEY}

Generate N¢

Check Dec(SK&:!,resps) ?2=TIDE™!

M, = {IDs,Ns,resps}

> Check LT¢

Verify PN}

Extract SKig*

Compute resps = Enc(SKiz!, TIDEY)

Extract RFZ™!

Compute MF} = MGF(F{,RFEY)

Extract RF:

Compute MFE*t = MGF(FE,RFE)

Compute SK¢- = KGF(TID¢, N, Ns)

Compute respe = Enc(SK&Z, {MFE | MFEFY || SKic)

M; = {respc}

Decrypt respc

Check Dec(SK{¢,resp)?=TID§

My = {resps}

Check KGF(TIDi¢,N¢,Ng)?=SKic'
1t Mech (MF{ REY) > Threshold
resps = Enc(SKi. . TIDi™!)

Else
resps = Enc(SKi; ,TIDL)
Store {RL, TIDE, SKi'}

Store {TID¢, RFE, SKic} <«

Fig. 3 Biometric verification protocol using the proposed method
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one; otherwise, he presents his face F) to his device’s
camera, extracts RFg_l) from his storage and computes
MF} = MGF(Fj, RES™Y). Next, he extracts RF from
PN}, by doing ADec(dc, AEnc(Qc, RF()) and computes
MFS™ = MGF(F%, RFL). Finally, the client computes
SKio = KGF(TIDL, N, Ns) and (4), then he sends the
message M3z = {respc} to the server.

Dec(SKgc_l), resps) = TIDg_l) (3)
respe = Enc(SKSo Y {MFS | MESTY | SKgc}().
4

Step 4. Upon receiving the message M3, the server
decrypts respc using SKéiE Y and checks whether (5)
holds. If it does not hold, the server terminates the ses-
sion; otherwise, it computes Mtch(MFé/,Rg_l)). If the
corresponding result is not above the face matching
threshold, the server computes resps = Enc(Sngcl,
TIDg_l)) and sends the message My = {resps} to the
client and terminates the session; otherwise, the server
first drops R(Cf_l), TID(Ci_l), SKggl) and replaces them
with MFC’gH)las RY, TIDL, and Sngc/, respectively.
Then, it computes resps = Enc(SngC/,TIDiC) and sends
the message My = {resps} to the client.

KGF(TIDs¢, No, Ns) = SKie'. (5)

Genuine user

Machine Intelligence Research 20(6), December 2023

Step 5. Upon receiving the message Ma, client checks
whether Dec(SKkq,resps) = TIDE holds. If it does not,
he repeats Step 3 from face presentation part; otherwise,
he drops previously stored credentials and replaces them
with {TID&, RFE, SKic}.

For a better understanding of readers, the whole oper-
ation of the proposed cancelable biometrics method in-
cluding client enrollment and verification is depicted in
Fig. 4.

5 Experiments

In this paper, we implemented an attack framework
using iterative optimization in which the adversary who
obtained the matching score of the victim's biometric fea-
ture explained in Section 3, is able to update an arbit-
rary face image such that the corresponding score (Euc-
lidean distance in our experiments, therefore dissimilar-
ity score) of it with respect to the victim's reference be-
comes lower than the verification thresholdB. In other
words, using this attack framework, the adversary is able
to manipulate his arbitrary face image and successfully
impersonate a legal client. In order to confirm the weak-
ness of current cancelable biometric methods against leak-
age attacks, we implemented our experiments with re-
spect to seven scenarios: i) Face verification without ap-
plying any protection method; ii) Face verification protec-
ted by applying Gaussian noise as cancelable transforma-
tion; iii) Face verification protected by applying Lapla-

Server Attacker

Transformation function
(Face morphing)

Reference

Random face
generator
(one-time-face)

Transformation function
(Face morphing)

Iterative

optimization
&
- v

Reference

Matching

REEEI

Reference

Fig.4 Visual examples of the process of the proposed OTB-morph for enrollment and various verification sessions (genuine clients and

attackers)
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cian noise as cancelable transformation; iv) Face verifica-
tion protected by applying spread, a transformation that
replaces each pixel with a random pixel value found in a
radius nearby; v) Face verification protected by applying
imploding, a transformation that pulls pixels into the
middle of the image; vi-a) Face verification protected by
applying the proposed method using the LFW dataset as
random biometric; and vi-b) Face verification protected
by applying the proposed method using the Face Mask
Lite dataset as random biometric. An example showing
the input biometric of the experimented scenarios is de-
picted in Fig.5. The experiments are conducted using the
following face datasets: on the one hand, VGGFace243
and CASIAMS] are used as genuine client’s biometrics, and
on the other hand, LFW7 48 and Face Mask Lite! are
used to select the random face images for the morphing
operations?.

5.1 Implementation details

We performed our implementation on pre-trained Res-
Net-50049, pre-trained ArcFacel®® and pre-trained Ada-
Facel5l, CNN models proposed for general image recogni-
tion tasks using two groups of datasets. As the first
group, we used the VGGFace2%5 and Casialifl datasets,
two face datasets that contain multiple faces of the same
individual. The images in these datasets are utilized as
probe faces of genuine clients during verification sessions.
Regarding the second group, we used LEWH7: 48] and Face
Mask Lite (we used face images without masks) as the
auxiliary data (a random seed) to create morph faces for
our proposed OTB-morph scheme. In other words, our
method takes two input faces, one from the first group as
the probe biometric feature of the subject meant to be
protected, and the second input is a randomly chosen face
image from the second group to be morphed with the first
image.

5.1.1 Image morphing

Image morphing is an image processing technique that
can transform one image into another image. Applied to
face images, morphing is being used to generate artificial
faces which resemble the biometric characteristics of at
least two input individuals in image and feature spacel!3].
Morphed faces can be generated using various methods
from simple image overlaying to Generative Adversarial
Networks (GAN). The most popular morphing method is
landmark-based, which consists of three steps: 1) determ-
ining a correspondence between the two contributing face
images; 2) warping, which means distorting both features
such that the corresponding facial elements (e.g., eye,
nose, mouth) are geometrically aligned; and 3) blending,
which refers to the process of merging the color values of
wrapped images. In our experiments, we use landmark-

L https://www.kaggle.com/datasets/prasoonkottarathil /face-ma-
sk-lite-dataset

2 Faces in Figs. 4 and 5 are selected from LFW publicly available
at https://www.kaggle.com/datasets/jessicali9530/1fw-dataset

based morphing as a transformation function for our pro-
posed cancelable biometrics method. There are many
landmark detection algorithms such as [52] for face bio-
metrics. Our morphing implementation is based on Dlib
for landmark detection’3l and OpenCV for image pro-
cessingl53l.

The landmark locations obtained from both face im-
ages are warped by averaging the pixel positions. After
moving the pixels we apply image warping based on
Delaunay triangulation¥. Our morphing method has a
parameter o between 0 and 1 that trades off the contri-
bution of each input image: a smaller a generates an out-
put more similar to the first contributed face image
(probe face in our case), and a higher « results in a
morphed face more alike to the second contributed face
image (random face). In these experiments, we selected
a = 0.5 to maintain the trade-off.

5.2 Performance and security metrics

We use the Equal Error Rate (EER) to evaluate and
compare the verification performance of our proposed
method with other scenarios. EER is the point where the
False Acceptance Rate (FAR) and False Rejection Rate
(FRR) are equal, where FAR is the percent of unauthor-
ized clients (random impostors®) incorrectly verified as a
valid client (genuine) while FRR is the percent of incor-
rectly rejected valid clients. The evaluation metric EER
describes the overall accuracy of a biometric system. In
general, the lower the EER value, the higher the accur-
acy of the biometric system.

Regarding security evaluation, the vulnerability of the
compared cancelable biometrics schemes under the con-
sidered threat model (cf. Section 3) is analyzed by ex-
amining the capability of the attacker to minimize the
dissimilarity score of his arbitrary face image by iterative
optimization exploiting the leaked matching score. More
specifically, we measure the Attack Success Rate (ASR)
to assess and compare the vulnerability of all experiment-
al scenarios/39].

5.3 Results

The results of our experiments on ResNet-50, Ar-
cFace, and AdaFace models are demonstrated in Figs. 6—
8, respectively. In general, Figs. 6-8 consist of seven rows,
each of them representing one of the seven scenarios we
implemented: (a) not applying any protection method;
(b) applying Gaussian noise; (¢) applying Laplacian noise;
(d) applying spread; (e) applying imploding; (f) applying
our proposed OTB-morph method using the LFW data-
3 This kind of impostors are different from the attackers
considered in Section 3, who have much more information to
attack the system compared to a random impostor that just tries
to illegally access the system by using his own face input and no

other methods to improve the attack success.
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Scenario iii
(Laplacian noise)

Scenario ii
(Gaussian noise)

Scenario i
(Normal faces)

Scenario vi
(OTB-morph)

Scenario v
(Imploding)

Scenario iv
(Spread)

Fig.5 Examples of experimented scenarios

set as the random biometric; and (g) applying our pro-
posed OTB-morph method using face mask lite dataset as
the random biometric. Figs.6-8 also comprise four
columns: the first column shows the attacking matching
(dissimilarity) score evolution on the CASIA dataset. The
second column shows the score distributions obtained for
the seven scenarios considered with respect to the CASIA
dataset. The last two columns are similar to the first two
columns but with respect to the VGGFace2 dataset. In
the plots representing attacking matching (dissimilarity)
score evolution (Columns 1 and 3), in the vertical axis we
can see multiple horizontal lines representing the de-
cision threshold location at the EER point and various
FAR points (see the figure legends). Additionally, these
plots represent the time evolution of the attacking score
in 180 consecutive iterations, which we call verification
sessions (from left to right in each plot).

The scenarios that we used as transformation func-
tions differ from each other in terms of the type of per-
turbation they apply to the input image. While some
scenarios simply add different types of noises, others
change the structure of images. Therefore, to compare the
proportion of perturbations applied to input images in
each experimental scenario, we used two full-reference im-
age quality metrics: the mean square error (MSE) and the
structural similarity index (SSIM). The outputs of these
metrics are reported in Table 2.

Focusing on Fig.6, the first chart in the first row,
(row a), for the CASIA dataset (first two columns) shows
that the attacker matching score on scenario i falls below
the acceptance threshold (slightly above 0.9) from itera-
tion 55 onwards even for a high-security threshold (FAR
= 0.001) and ends at nearly 0.6 at iteration 180. Simil-
arly, for the next four rows on the same column, can-
celable biometrics applying Gaussian noise, Laplacian
noise, spread, and imploding respectively, we can see that
despite using these protection methods, the matching
score plunges alike almost at iteration 100 below the
threshold FAR = 0.001. However, this is not the case in
the proposed OTB-morph method, (rows f and g), using
both the LFW and Face mask lite dataset as random bio-
metrics. The output indicates that the attacking match-
ing score for the two scenarios of the proposed method
plateaued above the threshold FAR = 0.001 after itera-
tion 80. While the aforementioned score ends above 0.8
after 180 iterations on scenarios (vi-a and vi-b), it stands

@ Springer

at 0.7 at best on scenario ii in the end. The proposed
method withstands this iterative optimization attack in
addition to offering better performance. If we focus now
on the second column, it can be seen that the overlap-
ping area of the impostor and genuine score distributions
for the two scenarios of the proposed OTB-morph (Scen-
ario vi-a (row d)) is smaller than in the other experi-
mented cases. The same trends are seen for the case of
the VGGFace2 (last two columns) although the attacker
matching scores slightly go below the threshold for FAR
< 0.001 in the case of the proposed method. Considering
the first and third columns, the most apparent evolution
that can be observed is the falling rate of the attacker
matching score. While for the first three rows, it de-
creases drastically to a low Euclidean distance (between
0.6 and 0.7), this pace is far slower for the proposed
method, keeping the attacker matching score above 0.8
on both the CASIA and the VGGFace2 datasets. With
regard to the score distributions for the VGGFace2 (last
column), while the performance drop is not as severe as
in the second column, the performance of the proposed
method is still better compared to the other scenarios.

Comparing the first graph with the third one, in the
second row (b), it can be seen that the matching score in
the VGGFace2 graph falls more than that of CASIA.
This finding shows that the CASIA is slightly more ro-
bust against the iterative optimization attack than the
VGGFace2. The reason behind this difference is that our
experimental ResNet-50 model was pretrained on the
VGGFace2 dataset. Thus it works better since we picked
subjects of morphing from the same dataset. In related
works around adversarial samples, this variation is called
transferability(53.

For the experiments reported in Fig.7, note that the
genuine and impostor distributions are more overlapped
than before. This happens because our attack framework
on ResNet-50 has been built upon TensorFlow in the pre-
vious version. Therefore, in order to have the same exper-
imental condition in terms of our threat model, we had to
use the TensorFlow implementation of the ArcFace!
which is an unofficial version and does not perform as
well as Oxford VGGFace implementation used for Res-
Net-50°. Despite the low performance of this ArcFace ver-

4 https://github.com/peteryuX/arcface-tf2
5 https://github.com/remalli/keras-vggface
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Fig. 6 Comparison of practiced scenarios on the ResNet-50 model: The first column is attacking matching (dissimilarity) score
evolution on the CASIA dataset (positioned on top of decision thresholds at EER and various FAR). The second column is the genuine
and random impostor distributions of the seven considered cancelable biometrics approaches on the CASIA dataset corresponding to
different rows. Rows represent different scenarios: (a) Without applying cancelable biometrics; (b) Applying Gaussian noise;
(¢) Applying Laplacian noise; (d) Applying spreading; (e) Applying imploding; (f) Applying the proposed OTB-morph scheme using the
LFW dataset as random biometric; (g) Applying the proposed OTB-morph scheme using Face Mask Lite dataset as random biometric.
Third and fourth columns: Idem on VGGFace2 dataset.
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Fig. 7 Comparison of practiced scenarios on ArcFace model: Descriptions are the same as the caption in Fig. 6
sion, the results follow the same pattern as those of Res- the first five scenarios for both CASIA and VGGFace2
Net-50. The falling rate of the attacker matching score in datasets (first and third columns, rows (a)—(e) are double
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Fig. 8 Comparison of practiced scenarios on AdaFace model: Descriptions are the same as the caption in Fig. 6

that of the proposed method in the first 10 iterations. In

addition, it can be seen in the same graphs that the at-
tacker matching score falls below the threshold FAR =

0.1 for other scenarios except for the proposed ones which
remained above the EER threshold.
Regarding AdaFace, we also had to use an unofficial
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Table 2 Rate of perturbations applied to images in each experimented scenario. MSE stands for the mean square error (the lower the
value, the more similar the perturbed image is to the original image), SSIM stands for the structural similarity index value
(ranging between —1 and 1) where 1 means a perfect match between the perturbed image and the original image.

Metric

Scenarios

ii) Gaussian noise iii) Laplacian noise

iv) Spread transformation

v) Imploding transformation vi-a) OTB vi-b) OTB

MSE 712.48 361.78

SSIM 0.21 0.30 0.23

493.52

464.07 1785 2830

0.58 0.20 0.13

version® implemented in TensorFlow but contrary to the
ArcFace it performs very well. The corresponding results
are depicted in Fig.8. From the charts in the first and the
third column, it is evident that while the attacker match-
ing score for the proposed scenarios stands above EER, in
all other scenarios, it falls either below FAR = 0.001 or
oscillates between FAR = 0.01 and FAR = 0.001. Tak-
ing into account the performance results of the practiced
methods demonstrated in the second and fourth columns
in all these graphs, the superiority of the proposed meth-
od in terms of decreasing the overlapping region of the
impostor and genuine score distributions while offering a
higher protection rate is noticeable.

Additionally, we reported both EER and FRR values,
as well as ASR against the attackers described in Section 3,
for FAR = {0.1,0.01,0.001} with respect to ResNet-50,
ArcFace and AdaFace models in Tables 3-5, respectively.
Starting with Table 3, we can see that the smallest EER
and FRR values are obtained by the proposed method
(Scenarios vi-a and vi-b) whereas the highest value (worst
performance) is mainly reported on imploding (Scenario v)
for both CASIA and VGGFace2. On the other hand,
while the ASR for spread (Scenario iv) at EER and FAR
= 0.1 on CASIA are above the values of other scenarios,
the first scenario (unprotected biometric system) repor-
ted the highest ASR in both datasets overall. Out of the
seven scenarios, although Gaussian noise (Scenario ii)
performed very poorly for CASIA at FAR = 0.01 with
the corresponding FRR = 67.9%, the reported FRR res-
ults for imploding are worse than all other scenarios in
both datasets. Conversely, the proposed method acquired
the best performance with FRR = 0.8% at FAR = 0.1 in
both CASIA and VGGFace2.

In terms of ASR, while the highest percentage on
CASIA (94%) belongs to Scenario iv at the EER point,
on VGGFace2 it can be seen in Scenario at the EER with
90.3%. Regarding the proposed method, we observed that
there is not much difference for ASR at the EER point
between all scenarios because the attacker matching score
plummets rapidly in some first iterations regardless of the
protection method. However, the proposed method de-
creases the falling rate noticeably as the corresponding
values for the ASR on Scenarios vi-a and vi-b at the FAR

6 https://github.com/leondgarse/Keras_insightface
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= 0.001 point are 28.2% and 23% on CASIA and 41.9%
and 34.1% on VGGFace2, respectively. The reason we did
not report the ASR for FAR = 0.1 in some scenarios is
that the EER is higher than the FRR at FAR = 0.1.

Considering Table 4 we can observe that the results
for the performance differ between CASIA and VGG-
Face2. Although the worst performance is observed in
Scenario ii, Scenario v is almost as inferior as the former.
Concerning ASR, the proposed method withstands the it-
erative optimization attack better while offering higher
performance compared to all the other scenarios. Specific-
ally, the ASR values at the EER point for both scenarios
of the proposed method are all below 50%: 19.2% and
36.4% on CASIA and 31.7% and 48.6% on VGGFace2.
These results are achieved where none of the other scen-
arios performed better than 80% at the same threshold.

Finally, with respect to the AdaFace, the results con-
vey the same understanding as the previous tables. It can
be seen that not only the proposed methods perform best,
but also cancelable biometrics generated by this ap-
proach are further protective keeping the ASR less than
60% at the EER point where it stands above 90% for oth-
er scenarios at the corresponding setting. These results
show the superiority of OTB-morph compared to related
methods both for security protection and recognition per-
formance.

5.4 Limitations

Despite the advantages that the proposed method in-
troduces to biometric template protection methods in
terms of higher performance and lower attack success rate
against leakage attacks, there are some limitations that
need to be taken into account:

1) The proposed method requires the acquisition of a
reference face in each authentication session, which is
computationally more expensive than other cancelable
methods that change the reference once in a while or
upon the leakage.

2) The proposed method might be slower than other
cancelable approaches as it imposes morphing in each au-
thentication attempt.

3) The proposed method requires a random face im-
age to carry out the morphing in each authentication at-
tempt. This random image can be produced by generat-
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Table 3 Comparison of the performance and security of the proposed method using LEFW dataset as random biometric
(Scenario iv-a) and using Face Mask Lite dataset (Scenario iv-b) with other scenarios on ResNet-50 model

CASIAM6] VGGFace2l49]
Scenario FRR, ASR FRR, ASR
EER, ASR EER, ASR

FAR =0.1 FAR =0.01 FAR = 0.001 FAR =0.1 FAR =0.01 FAR = 0.001

i) 6.6%, 88% 4.6%, 85.7% 18.9%, 76.5% 37.8%, 66% 3.68%, 90.3% 1.8%, 84.9% 8.7%, 78.2% 22.4%, 67.9%
ii) 16.6%, 90.3% 23.2%,86.1%  67.9%, 12.8% 84%, 43.9% 8.8%, 86.3% 7.2%, 85.5% 28.4%,71.2%  49.4%, 57.5%

iii) 11.29%, 89% 12.4%, 90% 37%, 75.4% 64%, 59.7% 5.7%, 84.5% 3.5%, — 17.7%, 74.7% 37.6%, 63%
iv) 14.97%, 94% 20%, 91% 50%, 76% 74.5%, 60% 8.6%, 89% 7.7%, — 30%, 76% 56.7%, 63.5%
v) 23.6%,93.4%  37.1%,86.3%  68.2%, 66.8% 86.3%, 51.4% 16.45%, 88.6% 22.1%, 84.2% 46%, 65.7% 67.5%, 50.6%
vi-a) 2.69%, 86% 0.8%, — 4.8%, 71.3% 19.5%, 28.2% 3.11%, 86.4% 0.8%, — 7.3%, 73.6% 19.8%, 41.9%
vi-b) 6.29%, 85% 4.3%, — 20.4%, 57.9% 44.6%, 23% 6%, 87.3% 4.1%, — 19.3%, 64.8%  43.8%, 34.1%

Table 4 Comparison of the performance and security of the proposed method using the LEW dataset as random biometric
(Scenario iv-a) and using the Face Mask Lite dataset (Scenario iv-b) with other Scenarios on the ArcFace model

CASIAM0] VGGFace247]
Scenario FRR, ASR FRR, ASR
EER, ASR EER, ASR

FAR =0.1 FAR =0.01 FAR =0.001 FAR =0.1 FAR =0.01 FAR = 0.001

i) 25.79%, 88.3%  44.3%,70.4%  74.3%,24.1% 93%, 2.5% 18.3%, 88.2% 26.8%, 78.5%  58.1%, 39.6% 79.3%, 13%
ii) 32.7%, 80.1% 62.8%, 39.9% 89.5%, 4.1% 97.6%,0.1% 24.7%, 81.8% 44.9%,56.6%  77.7%, 12.6% 92.3%, 1.8%
iii) 29.7%, 82.8% 54.4%, 50% 87.8%, 6.9% 97.2%, 0.3% 22.46%, 84.3% 39%, 65.7% 74.6%, 20% 89.5%, 0.4%
iv) 30.9%, 82.4% 55.3%, 51.8% 84%, 12% 94.6%, 1.7% 23.64%, 94% 41%, 82% 74%, 33.4% 90.4%, 10%
V) 32.37%,87.7%  56.1%, 63.4%  80.9%, 16.5% 92.2%, 2.5% 24.14%, 80.2% 37%, 62.9% 63.8%, 24.9% 79.1%, 8.6%
vica)  11.59%,19.2%  12.3%,16.1%  37.5%,0.5%  66.1%,0.0%  11.3%,31.7%  12.5%,28.4%  37%,2.5%  59.5%, 0.0%
vi-b) 14.9%, 36.4% 19.9%, 25.7% 48.3%, 1.9% 72.6%, 0.1% 16.79%, 48.6%  24.5%, 32.6% 53.4%,2.7% 74.4%, 0.1%

Table 5 Comparison of the performance and security of the proposed method using the LFW dataset as random biometric
(Scenario iv-a) and using the Face Mask Lite dataset (Scenario iv-b) with other scenarios on the AdaFace model

CASIA] VGGFace2l4s]
Scenario FRR, ASR FRR, ASR
EER, ASR EER, ASR

FAR=0.1 FAR=0.01 FAR=0.001 FAR=0.1 FAR=0.01 FAR=0.001

i) 6.65%, 98.3% 5.3%,— 12.2%,95.6%  22.7%, 88.6% 3.0%, 98% 1.5%, — 4.7%,96.6%  8.5%,91.5%

if) 14.29%, 95.6% 17.1%,94.2%  34.6%, 75.8%  63.28%,36%  6.07%, 95.4% 4.5%, - 12.9%, 88.1%  29%, 69.7%
iii) 10.04%,97%  10.0%,96.9%  24.5%,87.2%  46.05%, 63.2%  4.36%, 96.8% 2.7%, — 8.4%,92.7%  15.8%, 82.6%
iv) 12.95%, 96.2% 14.7%, 95.18%  30.76%, 82.2%  49.4%, 55.1% 6.24%, 96% 4.8%, - 13.6%, 88.35%  28.6%, 70.6%
v) 21.33%,91.6%  30%,83.3%  54.8%,51.1%  71.7%,27%  13.44%,89.82% 15.7%,87.1%  33%,65.6%  47.1%, 41.9%

vi-a) 1.4%, 17.3% 0.2%,— 1.8%, 13% 13.3%,0.0%  1.09%, 31.3% 0.2%, — 1.1%, 30% 7.2%, 3.8%
vi-b) 4.1%, 42% 2.1%, - 9.5%,16.5%  24.4%,1.4% 3.7%, 59.2% 1.9%, — 8.2%,36%  19.3%,10.35%

ive networks. However, our experiments indicated that

the highest protection will be achievable when the dissim-

ilarity of the new random face is at the highest compared

to its predecessors.

6 Conclusions

This work has extended our experiments on our intro-

duced cancelable biometric method which can be categor-

ized as a branch of visual cryptography with the aim of
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protecting the biometric templates of clients against all
kinds of leakage attacks. The original idea is to adopt the
concept of the one-time-pad method to biometrics by us-
ing random biometrics as auxiliary data in a cancelable
biometrics scheme called OTB-morph. To this end, we
used morphing as the transformation function to gener-
ate an image that embodies two different identities. We
then experimented with the proposed idea using a prac-
tical implementation for face biometrics. In the reported
experiments we used a morphing algorithm based on Dlib
and OpenCV for generating the cancelable templates.
With respect to previously reported preliminary resu-
Itsl!4], the present archival paper presents and discusses
extended experiments by: increasing the number of itera-
tions for the iterative optimization attacks, using GAN-
generated faces as another mean for random biometric
generation, and using pre-trained ArcFace and AdaFace
models for additional evaluation. In conclusion, the pro-
posed method improves both the biometric performance
and security against the evaluated attacks.

In our future work, our main goal is to investigate
how we can maximize the distance between two one-time
biometrics of the same individual in subsequent sessions
so that we can offer the lowest ASR in case of iterative
optimization. Particularly, we would like to explore how a
random biometric with opposite features to the given sub-
ject (e.g., ethnicity, skin color, age, sex, and other facial
attributes) can help us to meet our goal.
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